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Minimising the actuating power of vertical
transport installations by optimisation of
dynamic and kinematics parameters

Florin Dumitru Popescu

Abstract— The s pecific en ergy co nsumption is mainly
influenced b y k inematics an d d ynamic measures of vertical
transport in stallationsa sw ell a sb yth e ¢ ompatibility o f
different ¢ omposing pa rts a ndt heir subcomponents. The
optimisationo fk inematicsan d dynamic parameters
characterising a t ransportcy cle i s d ecisive considering the
energy ¢ onsumption. A Iso c onsidering the operation o f't he
vertical transport installations, as well as the character of the
variation of kinematics and dynamic parameters during a race,
ithas been considered that one of the adequate optimisation
methods o f these p arameters is the cal culus of variations. In
order to apply this calculus, the definition of the optimisation
functional and r estrictions is im posed. The accel eration and
deceleration periods d uring each race o fa v ertical t ransport
installation may be considered a sp eriods o ftr ansitional
processes where kinematics and dynamic measures variations
take p lace (acceleration, s peed and forces) as well as some
electric measures (actuating motor’s current). One of the basic
performance p arameters o ft he o peration o ft he v ertical
transport installations is the s pecific e nergy ¢ onsumption
during a cycle. It therefore means that the optimisation of the
transport cycle related to this parameter may be realised using
a functional with a function under the integral d epending on
the electric energy consumption during a race.
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I. KINEMATICS PARAMETERS OPTIMISATION

WO constant accel eration p hase t achograms are used in
the case ofr educedt ransports ystemsan dar e
characterised by the lack of a constant speed period.

A. Constant acceleration tachograms

Therefore, the process is composed of only two periods of
time: the acceleration phase t1 and the deceleration phase t2
(figure 1).
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Fig.1 Speed variation trajectories for the two phase
tachogram

The discovery of a law of variations is imposed either for
i(t) or for a(t), for which the transition of the system from the
point of balance A to the point of balance B to be realised in
the shortest period of time possible. According to figure 1, for
the tr ansition in tim e o fth e s ystem f romp oint A to B,
trajectory 1 needs to be followed. T he s peed o f m ovement
needs to be maximum:

V.T=H (1

m

where, H is the distance undergone. If H is constant and T =
min, then: V,, =V,

mmax *

In order for the average speed to have a maximum value, the
acceleration is imposed to be maximum 8. It is also valid for
the deceleration period t,. If on one part of the trajectory (for
instance CD), the accel eration is s maller t han t he m aximum
admitted one, the average speed decreases therefore increasing
the period of the transitional process T’ (line 2). In this case,
for t he o ptimum p rocess, t he accel eration is as taircase
function:
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a(t)=a,; 0<t<l
2
T 2)

a(t)=-a,; 5<t<T

Thel aw v ariation o fs peed an d spacei s obtained by
integrating the equations of m ovement va riation c onsidering
the equations (2):

v(t)=] a(t)dt 3)
h(t)=[ v(t) ot )
Therefore:
v(t)=a,t T
1 O<t<— (5)
h(t)zgamtz 2
() =a, (-1 )
T2 T2 —<t<T (6)

For th e d etermination o fth e p eriod o f time T, the lim it

condition isu sed h(T)=H.I nt hisw ay
T2 T2 T2

h(T)= T°——-——|=a,— and:

(T) am( > 4J -

T:Z\/E (7)
a,

For t = %, speed v reaches the maximum value:

T H
Vmax :a’mE:a’m\/a: (8)

B. Variable acceleration tachograms

The continuous v ariationo fth ea ccelerationw illb e
replaced with a variation in steps within the same phase of the
trajectory for a period of time T of the process (figure 2), ina
finite number of equal intervals with a duration of:
=1 ©)
n

It is supposed that acceleration a (as a command value) is
constant w ithin e ach s ub-interval, w ith v alues ¢ omprised
between ay, a,, ... ,a,. By divide the acceleration, the following
may be written:
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(10)

depending on n variables.

Out of all the staircase functions a(t) the chosen one is
that for which the minimumo fthe W sumis obtained and
simultaneously e nsuring the compliance with the limit
conditions:

v(0)=0; v(T)=v, =0
(0)=0: v(T)- "
h(0)=0; h(T)=h =H
a(t)4
v(t) .
& v
a,
f >
T 2t 3t
a,
« T >
Fig.2 Variation in steps of the acceleration within the same
phase

Permanently d ecreasing t he d uration o fi ntervals 1, as a
result of a limit transition, a continuous dependence a(t) will
be obtained which minimises the integral W. Therefore, this is
the optimum command condition.

The speed v given by relation (3), ¢ onsidering th e in itial
condition v(0)=0, varies according to a d otted line (figure

2), consisting of parts of lines the coordinates of which t = 0, t
=rt=2r..,t=Tare:

(12)
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The movement h will be composed of sections of parabola.
Considering the initial condition h(0)=0, based on relation

(12) h; ordinates in pointst=0,t= 7, t= 27, ..., t = T are
obtained.

(13)

In order to d etermine the conditioned extreme of sum W
considering the relations (12) and (13), itis sufficient enough to
determine the unconditioned extreme of the auxiliary function V:

V=W+4v (8)+4h(8) (14)
where A; and A, undetermined L agrange m ultipliers,

determining the limit conditions.
Therefore,

n n 2 n n-1
V=Y a+arda +/12%Zq 2,223 (n-i)a (15)
i=1 i=1 i=1 i=1

The conditions needed for the extremes, is expressed by the
system a—V=0; i=1..,n.
a.

1

Considering the expression (15), the following are obtained:

o)

_V=2131, +/7.lr+&z'2+/122'2(n—i2=0 (16)
0 a

From where:
a =—i—ﬁr—ﬁr(n—i) (17)

2 4 2

IfforT = ct, th ed urationo fth e in terval 7 decreases
unlimited, and the number of intervals n tends towards infinity,
then @ passesinto a(t),and 7 in t. Considering n-z =T, it
results:

A

A
a(t)z—j—?(T—t) (18)

In order to determine the Lagrange multipliers the following
limit conditions are applied:

For t=0;a(0)=a,;and t=t;a(t,)=0, where:
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8, - is the initial v alue a nd th e la rgest o f th e ¢ ommand
measure ( acceleration); co nsidering an o ptimum process it
varies linearly from +a, to -ag;

ta - ist he m oment t he accel eration p asses t hrough the
neutral.

The f ollowing e quation s ystemr esults a pplying these
conditions for expression (18):

_h A
a=—y T
A
S0

Solving t he s ystem a ccording the unknown A; and A, it
2
A = —tia.

results: 4, =2a,;

a

Considering that T =2t, and a(T)=-a,, equation (18)

becomes a(t)=-a, +%(2ta -t).

Therefore, expression (18) may be written:

a(t):a%(l—tl]

a

(19)

It is observed that the o ptimumla wo fv ariationo f
acceleration both during accelerationas w ellas d uring
deceleration is limited, imposing a parabola variation of speed
during these periods.

Integrating equation (19), speed,s pacean den ergy
dissipated during tr ansitional s tarting a nd b reaking p eriods,
laws of variations are obtained:

v(t)= jo‘a(t) dt = J.;{aa (1—%}} dt = aﬁt(l_tlj

a a

The t, and a, constancies are determined from the limit
conditions:

v(T)=aT [1 _tlj =0 (23)
h(T)=aaT7(1—%]= H (24)
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From the above equation it results: Ve
T H
ta ZE; a, = 6; (25) [}
Thea bove case presents the starting and breaking >
transitional processes consideringat wo p hase t achogram.
Introducing the speed limit imposed by the operational norms
of v ertical tr ansport in stallations, V(t)<V, .. thent he t
. T |
tachogram t ransforms i nto a t hree p hase o ne w here t, <t, V1 g
(figure 3). .
It is observed that the duration of the transitional periods t; -
(acceleration) and t; (deceleration) depend on the level of the v ; >
maximum ad opted s peed, namely on the ordinate intersected By ¢
by the optimum variation curve of the speed (parabola) with a .
horizontal line corresponding to the maximum speed. . i} R
V oA
T, -
- T(. -
v Fig.4 Analysed tachogram
The following have been considered for the time reference:
> t
== 26
=7 (26)
L, L t,
where:
< 17 »la 12 > T represents the mechanical time constancy:
- T -
al T_I-a)N _mvy 27)
M N I:N
‘ -‘“‘--“\
< h [~~~ where:
v T - | is the inertia moment of moving elements;
M A "t - mthe weight of the moving elements;
T Ey - My and Fythe peripheral momentum and force;
T v - an and vy the angular and peripheral speed of the operating

Fig.3 Speed limit tachogram

In the same time, it results that the acceleration needn’t be
kept at a constant level, imposing a smooth linear variation.

II. DYNAMIC PARAMETERS OPTIMISATION

A method for the optimisation o fth e e lectric o peration is
constituted by adopting a trapezoidal tachogram and considering a
constant static torque according to the criteria of equivalent power.
The o bjective w as t he d evelopment of an opt imum trapezoidal
tachogram for the minimisation of the equivalent power (figure4).
The mathematical model used is based on relative coordinates with
the purpose of generalising the results.
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mechanism.

For the speed, torque and power, their nominal values have
been considered as reference values:

(28)

The followingr elationsr esult fort he movement and
acceleration:

2 H . oT VT
V=—=——

t = = ;
To, Tvy wy WV

29)

N
Thereforet he m ovementeq uationi nab solute m easures

M=M +

do o .
o may be written in relative measures as:
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H=Hs+ (;—d\; (30)
The expressions of speed and space are:

v:ij;hzjmt 31)
The power in relative measures is:

p:,uv:(ys+v')v (32)

The total movement of a trapezoidal tachogram, after making
the integrals (31) is:

1 1
X, :EW‘ +Vr, +EVT3 (33)
Introducing a dimensional variables:
a=i; ﬂ=r—3; O<a; p<1 (34)
2 4
The periods of the tachogram become:
T, =ary; 1= 1 7'-2:[1_(0(_ﬁ):|71 35)
And the regime movement and speed will be:
1
X, = 1—E(a+ﬁ) VT, (36)
v:fL—T—L——- (37)
Tll—z(a+ﬂ)

The corresponding accelerations f or thet woen ds oft he
tachogram are:

V=Y 1 X,
== =L
h aP-;@z+ﬂﬂ h
(38)
Vo= - 1 o
g 1 7’
S Bty (e )| T
Equivalent torque:
> 1 prc 5 _ &g 7l
ym—zh/uk—zh @ + vidr (39)

Where ¢ is the connection period:
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(40)

For a trapezoidal tachogram, it r esults the following equivalent
torque:

1 1
J— + E X2
a
Hon = € /102—1 3 T—ff (41)
- —(a+ :
{ 2( ﬂ)}
Equivalent power depending on the torque and speed:
)
0
Pn =V l.l.orc pdr py =exg « 7 7| (42)
T
V% T;*-fg.{l-;(mﬂ)}
The extreme of the equivalent power is obtained for = S
1 2 X2 [x]
Py =€l 1o + oL (43)
§ { ’ (1-a) a(l-a) @ |7

The minimum condition o f the equivalent power results from
cancelling the derivative of the power with the restrictions: V< 1; u

< e Hech < 1:

a 2 2
61’; :i—grf‘az(l—a)z—(l—Sa)zo

(44)

For the particular case ofno-load operation (o =0), it r esults
the optimum value of the power:

a=p5=0,2 (45)
The regime speed:
v=1,252 (46)
i
Minimum power:
X
PN min 4’ 94\/;_3 (47)
T

|
In case of load operation (14 # 0) it results:

O<ea,, <0,2

opt
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Analysing the above presented method, the main conclusion is
that it is a practical, o perative method butitis valid only for a
linear v ariation o fs peed. T here is no cer tainty that this type of
variation is optimum for e nsuring t he m inimum va lue o f's peed.
Moreover, choosing the trapezoidal tachogram is not scientifically
justified, being m ade o nly em pirically based o nex perience.
Therefore, there may be another form of the operational diagram
to ensure the minimum value of the actuating power.

III. ESTABLISHING THE OPTIMISATION FUNCTIONAL FOR
SINGLE CABLE VERTICAL TRANSPORT INSTALLATIONS POWERED
BY AN ASYNCHRONOUS MOTOR

The actual peripheral force is:

" Fdt 2t
e ZTF' ] (48)

Tef ef

Because function F(t) varies during different phases, the integral

.
I F2 dt is solved separately for each phase:
0

T N et
jo F2dt = Zojjo F2dt (49)

According to the general equation o f the d ynamics o fvertical
transport installations, th e f orcea tp eripheryo fth er eeling
organism is expressed using the following relation:

F=[kQ,+(q-q)(H-2x)]gxad m [N] (50)

The functional based on which the electric energy consumption
may be minimised during a race, may be established as follows:

3(x.a)=] f(xa)dt=] Fdt 51)
The peripheral force, are:
F=kQ,g+(q-q)g(H-2x)+ay m

F=A+D(H-2x)+a) m=A+DH-2Dx+ay m  (52)

where A=k-Q,-g; D=(g-0q,)g; only the positive sign has
been considered for the acceleration.
Squaring up expression (52), it results:

F?=A’+2ADH + D’H? —4ADXx—4D’Hx+4D*x* + 2Aa

> m+2DH ay m-4Dxay m+a’ (. m)2

By replacing the expression of the force it results:
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f (x,a)=(A+DH)’ —4ADx—4D*Hx+4D*x +
+2Aay m+2DH a) m-4Dxay m+a’ (Z m)2

or:

f (x,)=(A+DH)’ ~4D(A+DH)x+4D>x* +

(53)
+2a(A+DH)> m-4Dxay m+a’ (z m)2

Using the relation between the actual force and the quantity of
heat developed w ithint her eelingo ft hem otord uringa
transportation cycle, the actual force ex pression (equivalent) may
beused as an o ptimisation criterion. Therefore, the actual force
there is the following relation:

) jOTFZdt_ jOT f(x,a)dt

=
) Ty Ts

(54)

The beginning and the end of a transport cycle are characterised
by the following conditions:

X(0)=0; X(T)=H;v(0)=0; X (T)=v(T)=0 (55)

IV. RESTRICTIONS ON THE TRANSPORT CYCLE

In optimising the parameters o fth e tr ansport ¢ ycle th e
respect of as eries o f't echnical p rescriptions i s i mposed i n
order toe nsuret hec ontinuous o perationi nf ulls afety
conditions.

A. Kinematicsrestrictions

The variation of kinematics parameters (speed and acceleration)
duringat ransportcy clei sd efinedb yt he d iagram of speed
(tachogram) as well as by the diagram of the acceleration,
characterised by the relations:

(56)

Conditions (56, a) and (56, b) define the requirements regarding
movement and speed: at the end of the cycle, the space undergone
by the transport enclosures hasto be equal tothe length o fthe
transport race; the speed, both at the beginning of the movement as
well as at the end of the race has to be null.
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Conditions ( 56, c) and (56, d)ared efined byt he t echnical
prescriptions regarding the speed limit and acceleration with their
maximum admissible values.

Condition (56, ¢) limits the maximum value of the variation of
the force within the time unit, s eldom us ed m easure d uring t he
automated control of vertical transport installations.

Condition (56, f) is imposed by the cooling of f o f the electric
motors through theiro wn ve ntilation. T he d urationo ft he
movement with constant speed (maximum) it is recommended to
be at least 60% from the movement of a transport race.

B. Restrictions regarding the actuating motor

The power of the actuating motor needs to satisfy the following
criteria:

E IT F2dt
 —t e Y b o (57)
10007, 10007, \ T,
P F
T Tmog (58)
Pef Fef
where:

y is the overload a dmissible ¢ oefficient( y=1,6+1,8 for

asynchronous m otors; y=1,8+2,0 for continuousc urrent

motors);
Frex 1s the maximum value o f'the p eripheral force ap pearing
during the transport race;
Prex 1s the power corresponding to the maximum force.
Two models based on relations (54) may beused for the
optimisation:
e The optimisation model with the limit conditions (56, a) and
(56, b);
e The optimisation model with all the kinematics restrictions
imposed by the motor given by relations (54) and (55).
The first model covers criterion (48) and the limit conditions
(55). A practical model needs therefore to consider all the
restrictions, such as the second one foresees.
Thereforet he am endment o ff unctional ( 48)a ndt he
optimisation criterion (52) needs to be made, dividing the transport
cycle in several according to the expression:

e 2 0y pt
th_ F dt: Z;L f(x,a)dt

j=1 "

Fy T, T, [N] (59)

where:

- n is the number of phases of the extraction cycle;
- i is the beginning of all n phases;

- t; is the ending of all n phases.
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V. THE EXTREMES OF THE OPTIMISATION FUNCTIONAL;
EULER-POISSON EQUATIONS OF THE FUNCTIONAL

The es tablishment of't he f unction ch aracterising t he | aw of
variation ofs pace X(t),c onsideringth atth ein tegral

b
J= L f (X,y,y') dx represents a superior order function related to

the first derivative, may be made using the Euler-Poisson equation.
The equation (59) adapted for the present case is:

2

ACTEAN AETN I )
ox dt\ox ) dt“\ox"
Obtaining therefore:
d*x 4D d®°x 16D _ 2D(A-DH) 1)
dt*  Imadt*> (Zm) (Zm)’
or:
d*x d®x A2
dt* a4 (62)
where ﬂ.:ﬂ and W:%_DZH)

M (2Zm)

Considering that the difference in weight between the transport
cable and the balance one is characterised by D, three cases may
be distinguished in solving the above presented equation

a) D=9g(g-0,)>0 - unbalanced installation; the roots of
equation (62) are real;

b) D=g(g-0,)<0 - dynamically b alanced in stallation;
the roots of equation (62) are imaginary;

c)D=g (q - Q1) =0 - statically balanced equation.

For D =0, based on expressions (54) and (61) the following
are obtained:

d*x
~2_0 63
dt* (63)
Unbalanced installation (D > 0)
For this case, the solutions of equation (63), space, speed,
acceleration an d t he t hird d erivative o f's pace i nr elation t o
time are the following:

x=€"(C +Ct)+e“(C,+Ct)+p

X =v=Cae" +C,e" (1+at)-Cae ™ +C,e ™ (1-at)

X =a=Ca’e" +C,ae" (2+at)+Ca’e™ +C,ae™ (at-2)
X =p=a’e"(C +C,t)+3C,a’e" —a’e ™ (C, +C;t)+

+3C,a’e™

: = ——] ; = —
where: « ‘ ‘ ﬂ /12

(64)
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C; — integration constancies, i = 1; 2; 3; 4.

Statically balanced installation (D = 0)
For this case, the solutions of equation (63) are:

x=C +Ct+Ct’+C,t’

X =2C, +6C,t )
X =C, +2Ct+3C,t?

X =6C,

where C; are integration constancies, i = 1; 2; 3; 4.
Dynamically balanced equation (D < 0)
in this c ase, th e s olutions o f e quation (63) may have the
following form:

x=cosat(C, +C,t)+sinat(C, +Ct)+ 3

X =v=sinat(-Ca -C,at+C,)+cosat(C, + C,a +C,at) (66)
X =a=cosat (—Cla2 -C,a’t+ 2C4a) —sinat (2C2a +Ca’+ C4a2t)

X =a’(C +C,t)sinat—a’(C, +C,t)cosat —3C,a’ cosat —

-3C,a’ sinat

A

2

C; — integration constancies, | = 1; 2; 3; 4.

where: a =

>

A. Optimum transport cycle with limit conditions

Mathematically speaking, the optimisation o f the transport
cycle ¢ onsists i n f ounding t he f unction X(t), the lawo f
movement, ensuring the minimum of the integral:

The case of unbalanced installations (D > 0)

Based on the solution of the equation given by expression
(52) a nd t he i nitial conditions, a f our e quation s ystem is
formed in order to determine the integration constancies.
Following the solution of this equation system, the integration
constancies are:

C=-C-p
C,=2C,a-C,+af
c,=2 2, (67)
a &
_ab-ah
' ab-ah
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a =€ -7 +2aTe”’

a, =Te " -Te"

a=H- ﬁ + pe’T —apfTe”" (68)
b =ae +2a°T€"" +a€™

b2 — efaT _aTefaT _e—aT _aTeaT

b, =—a’pTe""

The case of datically balanced installations (D = Q)
Proceeding analogically, based on the solution of the equation
given by expression (67), the integration constancies are:

H 2H

3
C C—OC_T C4:_T_3 (69)

The case of dynamically balanced installations (D < Q)
Considering th e r elations (54), t he va lues o f't he i ntegration
constancies are:

C, = alQ asbl i_ﬁ C,;C,=—C,a;C == (70)
ab, — aQQ_ a &
where:

a =9naT —aTcosaT; a, =T sinaT
a,=H -+ pcosaT,
b =a’T sinaT +aT cosaT
b, =sinaT +aT cosaT; b, =-af sinaT

(71)

B. The optimum transport cycle with all technological

restrictions
2
The functional ﬂ—i ﬂ d =0 willbe
oy dx\oy dx

adjusted with all th e r estrictions im posed b y th e kinematics
installation. Considering a three period transport cycle, where
the second period is characterised by constant speed, the limit
conditions for each period may be explained as follows:
During thefirst period (the acceleration period)
X(O):O; X(tl): h; X (O)ZV(O):O; X (tl)zv(tl):

During the second period (constant speed oper ation)

x(t)=h; x(t+t)=h+h,
X (t)=v(t)= ( 6) =Vt +t,) = Vi

During thethird period (the deceleration period)

Vi (72)

(73)
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X(t+t)=h+h; x(t+t,+t;)=H

(74) t,+t, <t<T'h+hZ<x(t)sH
X (t+6,)=V(t +t,) = Vs X (t +t, +8) =Vv(t +t,+t,)=0 0<X (1)< |agmn|<x )g|amax|
x" )<
where: [P (80)
- 1 - represents the duration of the corresponding periods; X(tl +t2) = h, +hy; X(T) =H
- hy — is the distances undergone by the extraction containers X (t1 +t, ) = v(tl +t, ) =
during different periods. . B B
In the same time, relations (72), (73) and (74) also need to X (T)=v(T)=0
comply with the following requirements:

Considering t he e xpressions o f X, X and X', the as pect o f
t functional (53) for different balance degrees will be
t+t,+t,=T; h+h +h =H; ?220,6

Unbalanced installation (D > 0)
VI. ADOPTED OPTIMISATION MODEL

f =(A+DH)’ -
According to the expression (59), the following optimisation (m a)=(A+ 73{
model based on the equivalent force is adopted: ~4D(A+DH)[e"(C +C,t)+e (C+Ct)+ 4+
+4D*[&"(C, +Ct) +€ (C, +C,t)+ 5| +2(A+DH):
~Zm[Ca e +C,ae" (2+at) g

+Ca’e ™ +C,ae™ (at - 2)]
(75) -4DY m[ € (C, +Cyt)+e“ (C,+Cyt)+ |-

-[Clae +C,ae" (2+at)+C,a’e ™ +C,ae

(81)
Zj " f(x,a)dt
% =min(!)

“(at- 2)]
m)’ [Ca’e" +C,ae™ (2+at)+C,a’e ™ +C,ae ™ t-2)T
The conditions from the start and the end of the cycle HZ )[ @@ +Cadt 2+ at)r Ca'e™ +Cae™ (a )]
_ The C; integration co nstanciesar ed etermined u sing
X(t, =0)=0; x(t,=T)=H (76)  relations (67) and (68).
X (0)=v(0)=0; X(T)=v(T)=0

Statically balanced installation (D = 0)

f(x.a)= A+ AY. m(4C, +12C, ) +(2C, +6C, ) (3 m)’ 82)
v Z j ”‘ f(x,a)dt P The C; integration constancies are determined using relation
Ry =——t—y = <R g=<y 77 (69).
10007, Ty, P,
Dynamically balanced installation (D < 0)
Restrictionsimposed on periods:
For the starting period: f(x,a)=(A+DH) -
-4D(A+DH)[e"(C +C,t)+e“ (C,+Cit)+ B ]+
0<t<t'O<X()<hl'OSX(t)SV 'qmﬂSX(t)Sqm +4D["‘(C+Ct)+e""(C +Ct)+ﬂ] +2(A+DH)- (83)
< |plmax| =0; X(t ) ht X ( ) V(O) =0; (78) m[Ca e +C,ae” (2+at)+C,a’e* +Cae™ (at—2)]—
( )=v(t,) =V, -4DY m[ e (C +Cyt)+e™ (C, +C;t)+ S ]-
~[Claze”' +C,a€" (2+at)+Cia’e“ +C,a€e (at—2)]
For the second period of constant speed operation: +(z m)z [C a*¢" +Coa€" (2+at)+ Ca’e™ +Coae™ (at— 2)]
<t < <
het<t+tih X( ) h+h The C ; integration co nstancies ar e d etermined u sing
X (t) =V = CONst.; X (t)=0 (79)  relations (69) and (70).
(t ) (t 4t ): h+h Therefore, considering the t hree p hases o f't he t ransport
b cycle, the numerator of expression (75) of the equivalent force
may be written as follows:
For the deceleration period:

S G 4 t+t, T
Z‘L fxadt = [ * fixa)dt + L f(x,a)dt +ij f(x,a)dt (84)
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Considering the large volume o f ¢ alculations, th e d igital
integration of the components of expression (83) is imposed.

VII. EXAMPLE 1

Based on the proposed method a, C language software has
been developed. Software which was tested for an extraction
installation with cages with the following parameters:

— practical load extracted during a race:

Qu=16000 kg;

— extraction depth:

H =480 m;

— the sum of reduced masses:

2m= 66368 kg;

— specific weight of the extraction cable:

q=15,77 kg/m;

— specific weight of the balance cable:

01 = 6,72 kg/m;

— maximum acceleration at starting:

a1 max = 0,8 m/s%;

— maximum acceleration in breaking:

Agmax = | m/s%;

— maximum extraction speed:

Vinax = 9,35 m/s;

— operational period of extraction containers:

T=62s;

— pause period between races:

t,=20s;

— transmission efficiency:

n=0,92.

In order to obtain a m aximum efficiency, the following have
been considered:

t
?2 = 06andt, = t,= 0,2-T

Eliminating ¢; for the unbalanced case and considering q; =
g for th es tatically balanced o ne, m inimum v alues o f't he
equivalent force and the actuating p ower h ave r esulted w ith
approximately 10% smaller than the classic method.

Figure 5 presents a print screen of the results obtained.

Datele primare
de calcul
TIs1 --

Himl

Qulkgl Fef= 72456 [N1 Fef= 71269 [N] Fef= 69824 [N]
q [kgs/ml
qilkgsm]
Enlkgl

allnss?1
a3lnss21

UnmaxIn/s]

Pef= 736 [kH1 | Pef= 724 [kH] Pef= 718 [kH]

tplsl
nx1

Calculul fortei si a puterii efective petru instalatii de extractie
echipate cu colivii
Inprimanta? (D-N)
Fig.5 Print screen of obtained results for an extraction
installation with cages
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VIII. THE CASE OF MULTICABLE VERTICAL TRANSPORT
INSTALLATIONS POWERED BY A CONTINUOUS CURRENT MOTOR

For this kind of installation, the general equation of dynamics
is:

F=kQ9%[@.Qq +[(na-ng)(H-2x)Jg+ay m-5Qg] (85)

It is the case of several extraction installations with tilting
buckets and cages, due to the fact that in the beginning and the
end o fthe transport cy cle one o f the transport containers is
found on the interior of the guiding rails of the tower, some of
the w eight i s t aken b y it, th erefore th e te nsion in th e c able
decreases o n t he m entioned b ranch. Mo reover, due to the
beginning of the evacuation process before its complete stop,
the useful load varies as well during this period.

Putting to gether the terms from relation (84), the following
form is obtained:

F=(kQ, +2,Qu - A.Q,)g+(ng-ng )(H-2x)g+ay. m (86)

Considering:

A :(kQu +acQsch)g

ﬁ& = (k(:L 4_(zc(gsm __/3c(2u) g

A=kQ,g
D=(ng-ng)g
H=H_+2h

where:

- He -isthe level difference between the transport horizons;

- hy - is the height of the silo.

For:

t=0; >0; and f.=0

t>ty; a =0 (t;isthemovementperiodofthe empty
container within the guiding rail)

t<T; B=0

t=T, >0 (0,3-0,75)

Squaring up expression (85) it results:

F’=A +2ADH + D’H’ —4ADx-aD’Hx+4D’x’ +

> (87)
+2Aa) m+2DHay m-4Dxay m+a’ () m)

Replacing t he ex pression o f't he f orce i n f unctional ( 50), it
results a relation similar to (52) where the value of Ay may either be
Ay, A; or A depending on the transport phase:

f(x,a)=(A+DH) —4D(A +DH)x+4Dx" +

88
+2::1(A+DH)Zm—4Dvam+a2(Zm)2 (59
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The ex tremis of functional ( 88) ar e d etermined w ith t he

<t<
same r elations as in t he cas e p resented ab ove for different O<t<t,
balancing degrees, butn ew r estrictions ap pear d uring t he 0<Xx t) <h,
starting and the endi~ng period of a trapsport cycle.~ 0< X (t) <v,; v, £2,5mls
The case of af ivep haseex tractioncy cleu singt hes ame . ,
constancies: Bypin <X (1) S ya; B =0,5M/'s (95)

— During the movement o f't he e mpty t ransport ¢ ontainer
within the guiding rails:

x(0)=0; x(t)=h, X(0)=0; x(t)=h,

X (0)=v(0)=0; x(t,)=V(t,)=V, (89)
— For the acceleration period:
— During the second period (acceleration):

x(t)=h; x(t,+t)=h+h t, SE<t, +1,
, , hy <x(t)<h +h
X(t1)=V(t1):Vl ; x(t0+t1)=v(t0+t1)=vmx (90) .
Vy <X (1) < Vg (96)
— During the third period (constant speed operation): win SX (1) S8 B =0,5+0,8m/ 8
X(t0+tl):hﬂ+hl ; X(t0+t1 +t2):ho+h1 +h, X (I)S|p1max|; P =5MI' S
X (t+1) = V(L +1) = Vi o1) — For the constant speed operation period:
X (t+t +4) =v(t, +t +t,) =V,

t, +t <t<t, +t +t,
— During the fourth period (acceleration): h +h < X(t) <h +h+h,
X(t,+t,+t,)=h +h +h,

X (t) <V = CONSt (97)
X(t,+t,+t,+t,)=h +h +h, +h, X (t)=0
x(t0+t1+t2):V(to+t1+tz):Vmax X(t0+tl):ho+hl; X(t0+tl+t2):h)+hl+hz

| (92)
X (t+4 +t +6) =V(t, +4 +8, +t) =V, — For the deceleration period:

— During the movement period ofthe full bucketinthe
guiding rail: t,+6 +0 <t <t +t +1, +1,

hy+h+h <x(t)<h +h+h +h
V, <X (1) SV (98)
(93) || <X (1) < [Byrme]i By =0,5+1,0m/ &

X (t)é|p3m(|; P =5 M/ S

X(t, +t, +t, +t,)=h +h +h, +h,
X (t+t +t, +t) = v(t, +t +t, +t) =V,
X(t, +t, +t, +t, +t,)=H
X (t,+t +t, +t,+t,)=v(T)=0

— For the period o fth e m ovement o f'th e full ¢ ontainer

where: within the guiding rail:

t,+t+t +t+t, =T
hy+h+h+h+h=H

o . . . ty+t +t, +t, <t<T
The used optimisation model is an extension of expression

75y b+ h < x(t) < H
0<Xx(t)<v, (99)
5 ) '
Z.[:" f(X,a)dt Apin =X (t) S Ry = 0,5m/ s
F, = 1T = min() (94) X ()| Pirmi Pam =3M/'S
Imposed restrictions during the periods: Considering the 5 phases of the transport, the numerator of
_ For the starting period: expression (93) of the equivalent force becomes:
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+t

S ot fo
> fxaydt = [ fxa)dt+ [ f(xa)dt+
o1 ;

(100)
to+t +t, o+t + +tg T
j f(x,a)dt + j f(x,a)dt + ] f(x,a)dt
ty+ty to+t +t, to+ty +ty +t3

in t he e xpression o f the functional f(x,a) measure A; will
have the following values depending on the phase of transport:

—inmomentt=0: A= A;= (kQu+ @Q«n)d

—inphase 0 <t<t;: A =A=kQug

—in phase t = (tp) + (to + t;): A = A= kQ.g

—inphaset=(to +t;) + (tc t t; + t): A= A= kQg

*inphaset:(to“"tl +t2)+(t0+t1 +t2+t3):Aj = A= kng

*in(t0+t1+t2+t3)<t<T:Aj = A= kng

—inmoment t =T: A, = Ay = (kQ, + aQxn - A QL)

IX. EXAMPLE 2

Based on the proposed method a software in C language has
been d eveloped, s oftware which hasb eent ested f ora
multicable e xtraction in stallationw ithth ef ollowing
parameters:

- practical load extracted during a race:
Qu=12.000 kg;
- the weight of the tilting bucket:
Qsn = 18.000 kg;
- extraction depth:
H=913 m;
- the sum of reduced masses:
2m= 89.000 kg;
- the specific weight of an extraction cable:
g=10.6 kg/m;
- the number of extraction cables:
n=2;
- the specific weight of a balance cable:
0, = 10.4 kg/m;
- the number of balance cables:
ng = 2;
- maximum extraction speed:
Vinax = 12 m/s;
- the length of the discharge guiding rails:
ho = h4 =2 m;
- maximum acceleration during the starting period:
a; = 0,8 m/s’;
- maximum deceleration during breaking:
as= 1,0 m/s;
- the exit speed from the guiding rail of the empty tilting
bucket:
Vo= 2,5 m/s;
- the entering speed in the guiding rail of the full tilting
bucket:
Vv, = 1,5 m/s;
- the movement period of the extraction containers:
T=87s;
- pause period between the races:
t,=20s;
- transmission efficiency:
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n=20,85;
- the coefficients characterising the extraction container:
k=1,15; a.=0,15; 5. =0,5.
Figure 6 presents a print screen of the results obtained.

Datele primare
de calcul Gradul de echilibrare al instalatiei de extractis
.Popescu Florin
Petrosani

Tls1
HInl
Qulkyl

q [kgsnl

allnss?]
a3lnss? ]
Unaxln/s]
k

tpls]
nx1

IO O®
e D I P DN D MY L ) L
NOENANDOURLDD®D

fic
Oschlkgl
holnl

Calculul fortei =i a puterii efective petru inst.de extractie cu schipuri

Fig.6 Results obtained for the multicable extraction
installation

Figures 7...18 present the v ariation d iagrams o f the speed
and acceleration for Te[87,109]s.
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Fig.8 The variation of speed and acceleration for T=89 s
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Fig.18 The variation of speed and acceleration for T=109 s

X. CONCLUSIONS

e Analysing the optimisation trials of electric operation of
hoisting installations, presented in the speciality literature, it is
observed t hat t hese ar e v alid o nly for trapezoid tachograms
(with constant accelerations and linear v ariation o f s peed in
extreme periods). There is no certainty that this type of
variation is o ptimum for e nsuring the value o f the minimum
power. Imposing from the be ginning a trapezoid form of the
tachogram d oes n ot h ave an y s cientific j ustification, being
made empirically;

¢ In order to minimise the actuating power of the extraction
installations, the method of the calculus of variations is used,
establishing an adequate mathematical model;

e Inordertousethe proposed optimisation method, the
definition of the o ptimisation a nd r estriction f unctional w as
imposed. T he o ptimisation f unctionalis b asedo nth e
peripheral force of the cable actuating organism results from
the general equation of dynamics;

e Thes olutionso fE uler-Poisson equations of t he
optimisation functional differ depending the degree of balance
of the installation;

e The digital integration of the functional of the equivalent
force has to bem ades eparately, f or each p haseo f the
extraction, considering the difference between the restrictions
characterising the distinct phases;

e Using the third d egree q uadrate formula for the digital
integration o f'th e f unctional co rresponds co mpletely t o the
precision required by the calculations;

e The im portant d etermination v olume for in tegrating the
optimisation functional implies the u se o fc¢ omputers. T he
software developed i n C 1 anguage an d al so ex perimented
proved itself to be a fast tool for practical calculations;

e The d eveloped cal culations oftware al low the fast
determination o f the minimum actuating p ower for any mono
or multi ¢ able, w ith tiltin g ¢ ontainers or c age extraction
installation (unbalanced, statically or dynamically balanced);

e Following theu se o f't he d eveloped s oftware f or t he
extraction installations withc ages o rtiltin gc ontainers,
considering t he r eal ch aracteristic p arameters, v alues of the
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actual p ower r esulted with 50 - 70 kW s maller t han w hen
classical methods were used, representing therefore a r elative
decrease of power and co nsequently o f't he co nsumption o f
energy with approximately 10%;

e The proposed method is an operative and precise one and
may s erve to v erify a nd d esign th e extraction installations,
determining the optimum functional parameters.

REFERENCES

[1] Fransua Alexandru, “Masini si sisteme de actionari electice — Probleme
fundamentale”, Editura Tehnica, Bucuresti, 1978.

[2] Florin Dumitru Popescu, Ilie Mitran, “The analysis of vertical transport
installations considering the theory automatic systems”, Proceedings of
the 8th WSEAS International Conference on System Science and
Smulation in Engineering (ICOSSSE '09), University of Genova, Italy
October 17-19, 2009, pp.125-130.

[3] Florin Dumitru P opescu, Ilie M itran, “Vertical T ransport I nstallations
Balance S urvey”, WSEAS TRANSACTIONS on SYSTEMS and
CONTROL, I ssue 1 0, V olume 4 , O ctober 2009, ISSN: 1991-8763,
pp.509-518.

[4] Florin D umitru P opescu, “Aplicatii industriale ale tehnicii de calcul,
Editura AGIR, Bucuresti”, 2009, ISBN 978-973-720-234-5.

[5] Florin Dumitru Popescu, “Instalatii de transport pe verticala”, E ditura
Focus, Petrosani, 2010, ISBN 978-973-677-182-8.

Issue 3, Volume 7, 2013 276

[6]

(7]

(8]
(9]

(10

[11

[12
[13

[14

]

]

]
]
]

Florin Dumitru Popescu, Gabriel Dimirache, “Instalatii de transport pe
verticala — Calcule de verificare si dimensionare”, E ditura F ocus,
Petrosani, 2011, ISBN 978-973-677-182-8.

Florin Dumitru Popescu, Ilie Mitran, “The analysis of vertical transport
installations considering the theory automatic systems”, Proceedings of
the 8th WSEAS International Conference on SYSTEM SCIENCE and
SIMULATION in ENGINEERING (ICOSSSE '09), U niversityo f
Genova, Genova, Italy October 17-19, 2009, ISSN: 1790-2769, ISBN:
978-960-474-131-1, pp.125...130.

Magyari A ndrei, “Instalatii mecanice miniere”, Editura Didactica si
Pedagogica Bucuresti, 1990.

Nan Ma rin S ilviu, “Capacitatea sistemelor de transport”, Editura
Universitas Petrosani, 2000.

Petrilean D an C odrut, “The study of Energy L ossest hrough C ase
Helical S crew C ompressor”, Bulletin of the Transilvania University of
Brasov, Proceedings of the internationally attended national
conference on thermodynamics, May, 2 1-22, Vol. 2(51) series I, ISSN
2065-2119, ISBN 978-973-598-521-9, pp. 235-241 2009.

Petrilean Dan Codrut, “Method of Calculus for the Power Input of the
Helical S crew C ompressor”, Politehnica Bucharest University, Sci.
Bull. Series D, Vol. 71, Iss. 4, ISSN 1454-2358, pp.121-130, 2009.
Pop E mil, “Automatizari in industria minierd”, Editura Didactica si
Pedagogica, Bucuresti, 1983.

Sabac 1.Gh., “Matematici s peciale”, Editura Didactica si Pedagogica,
Bucuresti, 1981.

Tunsoiu G heorghe, “Actionari electrice”, Editura Didactica si
Pedagogica, Bucuresti, 1982.





