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Abstract— The s pecific en ergy co nsumption is mainly 

influenced b y k inematics an d d ynamic measures of vertical 
transport in stallations a s w ell a s b y th e c ompatibility o f 
different c omposing pa rts a nd t heir subcomponents. The 
optimisation o f k inematics an d dynamic parameters 
characterising a t ransport cy cle i s d ecisive considering the 
energy c onsumption. A lso c onsidering the operation o f t he 
vertical transport installations, as well as the character of the 
variation of kinematics and dynamic parameters during a race, 
it h as b een co nsidered t hat o ne of the adequate optimisation 
methods o f t hese p arameters i s t he cal culus of variations. I n 
order to apply this calculus, the definition of the optimisation 
functional and r estrictions is  im posed. The accel eration an d 
deceleration periods d uring each  r ace o f a v ertical t ransport 
installation may be considered a s p eriods o f tr ansitional 
processes where kinematics and dynamic measures variations 
take p lace ( acceleration, s peed an d f orces) as  w ell as  some 
electric measures (actuating motor’s current). One of the basic 
performance p arameters o f t he o peration o f t he v ertical 
transport installations is the s pecific e nergy c onsumption 
during a cycle. I t therefore means that the optimisation of the 
transport cycle related to this parameter may be realised using 
a functional with a  f unction und er the i ntegral d epending on 
the electric energy consumption during a race. 
 

I. KINEMATICS PARAMETERS OPTIMISATION 

WO constant accel eration p hase t achograms ar e used i n 
the case of r educed t ransport s ystems an d ar e 

characterised by the lack of a constant speed period. 
 

A. Constant acceleration tachograms 
Therefore, the process i s composed of  only two periods of 

time: the acceleration phase t1 and t he d eceleration phase t2 
(figure 1). 
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Fig.1 Speed variation trajectories for the two phase 

tachogram 
 

The discovery of a law of variations is imposed either for 
i(t) or for a(t), for which the transition of the system from the 
point of balance A to the point of balance B to be realised in 
the shortest period of time possible. According to figure 1, for 
the tr ansition in  tim e o f th e s ystem f rom p oint A to B, 
trajectory 1 needs to be f ollowed. T he s peed o f m ovement 
needs to be maximum: 
 

=mV T H  (1) 
 

where, H is the distance undergone. If H is constant and T = 
min, then: max=m mV V . 

In order for the average speed to have a maximum value, the 
acceleration is imposed to be maximum amax. It is also valid for 
the deceleration period t2. If on one part of the trajectory (for 
instance CD), the accel eration i s s maller t han t he m aximum 
admitted one, the average speed decreases therefore increasing 
the period o f the tr ansitional p rocess T′ (line 2 ). In th is case, 
for t he o ptimum p rocess, t he accel eration is a s taircase 
function: 
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The l aw v ariation o f s peed an d space i s obtained by 

integrating the equations of m ovement va riation c onsidering 
the equations (2): 
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For th e d etermination o f th e p eriod o f time T, th e lim it 

condition is u sed ( ) =h T H . I n t his w ay 
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For 
2

=
Tt , speed v reaches the maximum value: 

max
m

H
2 a

= =m m
TV a a  (8)        

B. Variable acceleration tachograms  
The continuous v ariation o f th e a cceleration w ill b e 

replaced with a variation in steps within the same phase of the 
trajectory for a p eriod of time T of the process (figure 2), in a 
finite number of equal intervals with a duration of: 

 

=
T
n

τ  (9) 

 
It is supposed that acceleration a (as a command value) is 

constant w ithin e ach s ub-interval, w ith v alues c omprised 
between a1, a2, ... ,an. By divide the acceleration, the following 
may be written: 

2

1

∗

=

= ∑
n

i
i

W a τ  (10) 

 
depending on n variables. 
     Out of all t he s taircase functions a(t) t he ch osen one is 

that for which t he m inimum o f t he W* sum i s obt ained a nd 
simultaneously e nsuring the compliance with the limit 
conditions: 
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Fig.2 Variation in steps of the acceleration within the same 

phase 
 
Permanently d ecreasing t he d uration o f i ntervals τ, as  a 

result o f a  limit tr ansition, a  continuous dependence a(t) will 
be obtained which minimises the integral W. Therefore, this is 
the optimum command condition. 

The speed v g iven b y r elation ( 3), c onsidering th e in itial 
condition ( )0 0=v , v aries acco rding t o a d otted l ine (figure 
2), consisting of parts of lines the coordinates of which t = 0, t 
= τ, t = 2τ, ..., t = T are: 
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The movement h will be composed of sections of parabola. 
Considering th e in itial c ondition ( )0 0=h , based on relation 
(12) h i ordinates in  points t = 0, t = τ, t = 2τ, ..., t = T are 
obtained. 
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In o rder t o d etermine t he co nditioned extreme of sum W* 

considering the relations (12) and (13), i t is sufficient enough to 
determine the unconditioned extreme of the auxiliary function V: 

 
( ) ( )1 2

∗= + +k i k iV W v a h aλ λ  (14) 
 

where λ1 and λ2 undetermined L agrange m ultipliers, 
determining the limit conditions. 

Therefore, 
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The conditions needed for the extremes, is expressed by the 

system 
i

 V 0; 1, ,
 a

∂
= =

∂
i n . 

Considering the expression (15), the following are obtained: 
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∂
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From where: 
 

( )1 2 2

2 4 2
= − − − −ia n iλ λ λ

τ τ  (17) 

 
If f or T  =  c t, th e d uration o f th e in terval τ decreases 

unlimited, and the number of intervals n tends towards infinity, 
then ai passes i nto a(t), a nd τi in t. C onsidering ⋅ =n Tτ , it 
results: 

 

( ) ( )1 2a t T t
2 2
λ λ

= − − −  (18) 

In order to determine the Lagrange multipliers the following 
limit conditions are applied: 

For ( )0; 0= = at a a ; and ( ); 0= =a at t a t , where: 

aa - is the in itial v alue a nd th e la rgest o f th e c ommand 
measure ( acceleration); co nsidering an  o ptimum process it 
varies linearly from +aa to -aa; 

ta - is t he m oment t he accel eration p asses t hrough the 
neutral. 

The f ollowing e quation s ystem r esults a pplying these 
conditions for expression (18): 
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Solving t he s ystem a ccording the unknown λ1 and λ2, it 

results: 1 2
2

2 ;= = − a
a

a

a
a

t
λ λ . 

Considering t hat 2= aT t  and ( ) = − aa T a , equation ( 18) 

becomes ( ) ( )2= − + −a
a a

a

a
a t a t t

t
. 

Therefore, expression (18) may be written: 
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a
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It is observed that the o ptimum la w o f v ariation o f 

acceleration both during acceleration as  w ell as  d uring 
deceleration is limited, imposing a parabola variation of speed 
during these periods. 

Integrating equation (19), speed, s pace an d en ergy 
dissipated during tr ansitional s tarting a nd b reaking p eriods, 
laws of variations are obtained: 
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     The ta and aa constancies are determined from the limit 

conditions: 

( ) 1 0
 

= − = 
 

a
a

Tv T a T
t

 (23) 

 

( )
2

1
2 3

 
= − = 

 
a

a

T Th T a H
t

 (24) 

 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 3, Volume 7, 2013 264



 

 

From the above equation it results: 
 

2; 6
2

= =a a
T Ht a

T
  (25) 

 
The a bove case presents the starting and breaking 

transitional processes considering a t wo p hase t achogram. 
Introducing the speed limit imposed by the operational norms 
of v ertical tr ansport in stallations, ( ) max≤ admv t v  then t he 

tachogram t ransforms i nto a t hree p hase o ne w here ' <a at t  
(figure 3). 

It is observed that the duration of the transitional periods t1 
(acceleration) and t3 (deceleration) depend on the level of the 
maximum ad opted s peed, n amely o n the ordinate intersected 
by the optimum variation curve of the speed (parabola) with a 
horizontal line corresponding to the maximum speed. 

 

 
Fig.3 Speed limit tachogram 

 
In the same time, i t results that the acceleration needn’t be 

kept at a constant level, imposing a smooth linear variation. 

II. DYNAMIC PARAMETERS OPTIMISATION 

A method for the optimisation o f th e e lectric o peration is  
constituted by adopting a trapezoidal tachogram and considering a 
constant static torque according to the criteria of equivalent power. 
The o bjective w as t he d evelopment of  a n opt imum trapezoidal 
tachogram for the minimisation of the equivalent power (figure4). 
The mathematical model used is based on relative coordinates with 
the purpose of generalising the results. 

 

 
Fig.4 Analysed tachogram 

 
The following have been considered for the time reference: 
 

=
t
T

τ  (26) 

 
where: 
T represents the mechanical time constancy: 
 

⋅ ⋅
= =N N

N N

I m v
T

M F
ω

 (27) 

 
where: 
- I is the inertia moment of moving elements; 
- m the weight of the moving elements; 
- MN and FN the peripheral momentum and force; 
- ωN and vN  the angular and peripheral speed of the operating 

mechanism. 
     For the speed, torque and power, their nominal values have 

been considered as reference values: 
 

; ;= = = = =
N N N N N

v M F Pv
v M F P

ω µ ρ
ω

 (28) 

 
The following r elations r esult for t he movement and 

acceleration: 
 

' '
';= = = =

N N N N

H T v Tt v
T Tv v

θ ω
ω ω

 (29) 

Therefore t he m ovement eq uation i n ab solute m easures 

= +s
dM M
dt
ω  may be written in relative measures as: 
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The expressions of speed and space are: 
 

' ;= =∫ ∫v v dt h vdt  (31) 

 
The power in relative measures is: 
 

( )'= = +v s v vρ µ µ  (32) 

 
The total movement of a trapezoidal tachogram, after making 

the integrals (31) is: 
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Introducing a dimensional variables: 
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The periods of the tachogram become: 
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And the regime movement and speed will be: 
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The corresponding accelerations f or the t wo en ds of t he 

tachogram are: 
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Equivalent torque: 
2 2 , 2
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Where ε is the connection period: 
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c
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For a trapezoidal tachogram, it r esults the following equivalent 

torque: 
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Equivalent power depending on the torque and speed:  
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The extreme of the equivalent power is obtained for α = β: 
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The minimum condition o f the equivalent power results f rom 

cancelling the derivative of the power with the restrictions: v ≤ 1; µ 
≤ µmax; µech ≤ 1: 
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For the particular case of no-load operation (µ0 = 0), it r esults 

the optimum value of the power: 
 

0, 2= =α β  (45) 
 

The regime speed: 
 

01, 25=
l

x
v

τ
 (46) 

 
Minimum power: 
 

2
0

min 34,94=N
l

x
P ε

τ
 (47) 

 
In case of load operation (µ0 ≠ 0) it results: 
 
0 0,2< ≤optα  
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Analysing the above presented method, the main conclusion is 
that it is a  p ractical, o perative m ethod b ut it is  v alid o nly for a 
linear v ariation o f s peed. T here i s n o cer tainty that this type of 
variation is optimum f or e nsuring t he m inimum va lue o f s peed. 
Moreover, choosing the trapezoidal tachogram is not scientifically 
justified, being m ade o nly em pirically based o n ex perience. 
Therefore, there may be another form of the operational diagram 
to ensure the minimum value of the actuating power. 

III. ESTABLISHING THE OPTIMISATION FUNCTIONAL FOR 
SINGLE CABLE VERTICAL TRANSPORT INSTALLATIONS POWERED 

BY AN ASYNCHRONOUS MOTOR 

The actual peripheral force is: 
 

[ ]0= ≈∫ ∑
T 2 2

i i
ef

ef ef

 F dt F t
F N

T T
 (48) 

 
Because function F(t) varies during different phases, the integral 

0
∫
T

2F  dt  is solved separately for each phase: 

 

= ∑∫ ∫
nT ti2 2

i0 0
0

 F dt  F dt  (49) 

 
According to the general equation o f the dynamics o f vertical 

transport installations, th e f orce a t p eriphery o f th e r eeling 
organism is expressed using the following relation: 

 
( )( ) [ ]1 2= + − − ±   ∑uF kQ q q H x g a m N   (50) 

 
The functional based on which the electric energy consumption 

may be minimised during a race, may be established as follows: 
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The peripheral force, are: 
 

( ) ( )1 2= + − − + ∑uF kQ g q q g H x a m  
 

( )2 2= + − + = + − +∑ ∑F A D H x a m A DH Dx a m  (52) 
 

where = ⋅ ⋅uA k Q g ; ( )1= −D q q g ; only the positive sign has 
been considered for the acceleration. 

Squaring up expression (52), it results: 
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By replacing the expression of the force it results: 
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Using the relation between the actual force and the quantity of 

heat developed w ithin t he r eeling o f t he m otor d uring a  
transportation cycle, the actual force expression (equivalent) may 
be u sed as  an  o ptimisation cr iterion. Therefore, t he act ual f orce 
there is the following relation: 

 

0 0= =∫ ∫
T T2

ef
ef ef

F dt f(x,a)dt
F

T T
 (54) 

 
The beginning and the end of a transport cycle are characterised 

by the following conditions: 
 
( ) ( ) ( ) ( ) ( )0 0 0 0 0= = = = ='x ; x T H ; v ; x T v T  (55) 

 

IV. RESTRICTIONS ON THE TRANSPORT CYCLE 
In optimising the parameters o f th e tr ansport c ycle th e 

respect of a s eries o f t echnical p rescriptions i s i mposed i n 
order to e nsure t he c ontinuous o peration i n f ull s afety 
conditions. 

A. Kinematics restrictions  
The variation of kinematics parameters (speed and acceleration) 

during a t ransport cy cle i s d efined b y t he d iagram of speed 
(tachogram) as well as by the diagram of the acceleration, 
characterised by the relations: 
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dv t
x t a a d )
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x t e )

t . f )
T

ρ

 (56) 

Conditions (56, a) and (56, b) define the requirements regarding 
movement and speed: at the end of the cycle, the space undergone 
by the transport enclosures h as t o b e eq ual t o t he length o f t he 
transport race; the speed, both at the beginning of the movement as 
well as at the end of the race has to be null. 
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Conditions ( 56, c)  an d ( 56, d) ar e d efined b y t he t echnical 
prescriptions regarding the speed limit and acceleration with their 
maximum admissible values. 

Condition (56, e) limits the maximum value of the variation of 
the force within the time uni t, s eldom us ed m easure d uring t he 
automated control of vertical transport installations. 

Condition (56, f) is imposed by the cooling off of the electric 
motors through their o wn ve ntilation. T he d uration o f t he 
movement with constant speed (maximum) it is recommended to 
be at least 60% from the movement of a transport race. 

 

B. Restrictions regarding the actuating motor 
The power of the actuating motor needs to satisfy the following 

criteria: 
 

0⋅
= = ≤∫

T 2
ef max max

ef M
a a ef

 F dtF v v
P  P

1000 1000 Tη η
 (57) 

 

= ≤max max

ef ef

P F
    

P F
γ  (58) 

 
where: 
γ is the overload a dmissible c oefficient ( 1 6 1 8= ÷y , ,  for 

asynchronous m otors; 1 8 2 0= ÷y , ,  for continuous c urrent 
motors); 

Fmax is the maximum value o f t he p eripheral f orce ap pearing 
during the transport race; 

Pmax is the power corresponding to the maximum force. 
      Two models ba sed on  r elations ( 54) m ay b e u sed f or t he 

optimisation: 
• The optimisation model with the limit conditions (56, a) and 

(56, b); 
• The optimisation m odel w ith a ll the kinematics restrictions 

imposed by the motor given by relations (54) and (55). 
     The first model covers criterion (48) and the limit conditions 

(55). A  practical model needs therefore to consider all the 
restrictions, such as the second one foresees. 

     Therefore t he am endment o f f unctional ( 48) a nd t he 
optimisation criterion (52) needs to be made, dividing the transport 
cycle in several according to the expression: 

 

[ ]= == =
∑ ∑∫ ∫

fi fi

ii ii

n nt t2

t t
i 1 i 1

ef
ef ef

 F dt  f(x,a)dt
F N

T T
  (59) 

 
where: 
- n  is the number of phases of the extraction cycle; 
- tii is the beginning of all n phases; 
- tfi is the ending of all n phases. 

V. THE EXTREMES OF THE OPTIMISATION FUNCTIONAL; 
EULER-POISSON EQUATIONS OF THE FUNCTIONAL 

The es tablishment of t he f unction ch aracterising t he l aw of 
variation of s pace x(t), c onsidering th at th e in tegral 

( )∃ = ∫
b ,

a
 f x,y,y  dx represents a superior order function related to 

the first derivative, may be made using the Euler-Poisson equation. 
The equation (59) adapted for the present case is: 

 

0∂ ∂ ∂   − + =   ∂ ∂ ∂   

2

, 2 ,,

 f d  f d  f
 x dt  x dt  x

 (60) 

 
Obtaining therefore: 
 

2+ + =
4 2

4 2 2

d x 4D d x 16D 2D(A-DH)x
mdt dt ( m) ( m )Σ Σ Σ

 (61) 

 
or: 
 

2

4

4 2

4 2

d x d x x
dt dt

λλ ψ+ + =  (62) 

 

where =
4D

M
λ

Σ
 and 2=

2D(A-DH)
( m )

Ψ
Σ

. 

Considering that the difference in weight between the transport 
cable and the balance one is characterised by D, three cases may 
be distinguished in solving the above presented equation 

a) ( )1 0= − >D g q q  - unbalanced installation; the roots of 
equation (62) are real; 

b) ( )1 0= − <D g q q  - dynamically b alanced in stallation; 
the roots of equation (62) are imaginary; 

c) ( )1 0= − =D g q q  - statically balanced equation. 
For D = 0, based on expressions (54) and (61) the following 

are obtained: 
 

0=
4

4

d x
dt

 (63) 

 
Unbalanced installation (D > 0) 
For this case, th e s olutions of equation (63), space, speed, 

acceleration an d t he t hird d erivative o f s pace i n r elation t o 
time are the following: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 3 4

1 2 3 4

2 2
1 2 3 4

3 2 3
1 2 2 3 4
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t t

' t t t t
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"' t t t
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x e C C t e C C t

x v C e C e t C e C e t

x a C e C e t C e C e t

x e C C t C e e C C t

C e

α α

α α α α

α α α α

α α α

α

β

α α α α

α α α α α α

ρ α α α

α

 (64) 

where:  = −
2
λα ;   = 2

4ψβ
λ
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Ci – integration constancies, i = 1; 2; 3; 4. 
 
Statically balanced installation (D = 0) 
For this case, the solutions of equation (63) are: 
 

2 3
1 2 3 4 3 4

2
2 3 4 4

2 6

2 3 6

= + + + = + 


= + + = 

"

' '"

x C C t C t C t x C C t
x C C t C t x C

 (65) 

 
where Ci are integration constancies, i = 1; 2; 3; 4. 
 
Dynamically balanced equation (D < 0) 
in th is c ase, th e s olutions o f e quation (63) m ay h ave t he 

following form: 
 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1 2 3 4

1 2 4 2 3 4

2 2 2 2
1 2 4 2 3 4

3 3 2
1 2 3 4 2
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x C C t sin t C C t cos t C cos t

C sin t

α α β

α α α α α α

α α α α α α α α

α α α α α α

α α

(66) 

 

where: = −
2
λα ; 

Ci – integration constancies, i = 1; 2; 3; 4. 
 

A. Optimum transport cycle with limit conditions 
Mathematically speaking, the optimisation o f th e t ransport 

cycle c onsists i n f ounding t he f unction x(t), the law o f 
movement, ensuring the minimum of the integral: 

 

0= =∫
T

ef
ef

 f(x,a)dt
F min

T
 

 
The case of unbalanced installations (D > 0) 
Based o n the s olution o f the equation given by expression 

(52) a nd t he i nitial conditions, a  f our e quation s ystem is  
formed in order to determine the integration constancies. 
Following the solution of this equation system, the integration 
constancies are: 

 
1 3

2 3 4

3 2
3 4

1 1

1 3 3 1
4

1 2 2 1

2
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 (67) 
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α

α

β β αβ

α α α

α α
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  (68) 

 
The case of statically balanced installations (D = 0) 

Proceeding analogically, based on the solution of the equation 
given by expression (67), the integration constancies are: 

 

1 2 3 42 3

3 20= = = = −
H HC C ; C ; C

T T
 (69) 

 
The case of dynamically balanced installations (D < 0) 

Considering th e r elations (54), t he va lues o f t he i ntegration 
constancies are: 

 

4 3 2 3 1
−

= = − = − = −
−

1 3 3 1 3 2
4

1 2 2 1 1 1

a b a b a aC ; C  C ; C C ; C
a b a b a a

α β  (70) 

 
where: 
  
1 2

3
2

1

2 3

= − =
= − +

= +
= + = −

a sin T T cos T ; a T sin T
a H cos T ;

b T sin T T cos T
b sin T T cos T ; b sin T

α α α α
β β α

α α α α
α α α αβ α

 (71) 

 

B. The optimum transport cycle with all technological 
restrictions 

The functional 0
   ∂ ∂ ∂

− + =   ∂ ∂ ∂   

2

, 2 ,,

 f d  f d  f
 y dx  y dx  y

 will b e 

adjusted with a ll th e r estrictions im posed b y th e kinematics 
installation. Considering a three period transport cycle, where 
the second period is characterised by constant speed, the limit 
conditions for each period may be explained as follows: 

 
During the first period (the acceleration period) 
 
( ) ( ) ( ) ( ) ( ) ( )1 1 1 10 0 0 0 0= = = = = =' '

maxx ; x t h ; x v ; x t v t v  (72) 
 

During the second period (constant speed operation) 
 

( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 1 2

1 1 1 2 1 2
' '

max

x t h ; x t t h h

x t v t x t t v t t v

= + = +

= = + = + =
  (73) 

 
During the third period (the deceleration period) 
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( ) ( )
( ) ( ) ( ) ( )

1 2 1 2 1 2 3

1 2 1 2 1 2 3 1 2 3 0

+ = + + + =

+ = + = + + = + + =' '
max

x t t h h ; x t t t H

x t t v t t v ; x t t t v t t t
     (74) 

 
where: 
- ti - represents the duration of the corresponding periods; 
- hi – is the distances undergone by the extraction containers 

during different periods. 
In the same time, relations (72), (73) and (74) also need to 

comply with the following requirements: 
 

2
1 2 3 1 2 3 0 6+ + = + + = ≥

tt t t T ; h h h H ; ,
T

 

VI. ADOPTED OPTIMISATION MODEL 

According to the expression (59), the following optimisation 
model based on the equivalent force is adopted: 

 

== =
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fi
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3 t

t
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ef
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f(x,a)dt
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T
 (75) 

 
The conditions from the start and the end of the cycle: 
 

( ) ( )
( ) ( ) ( ) ( )

1 1 30 0

0 0 0 0
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x t ; x t T H
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The requirements the actuating motor needs to comply with: 
 

1000
== ≤ ≤
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fi
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3 t

t
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ef M
a ef ef

f(x,a)dt
v P
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 (77) 

 
Restrictions imposed on periods: 
For the starting period: 
 

( ) ( ) ( )
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For the second period of constant speed operation: 
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For the deceleration period: 
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Considering t he e xpressions o f x, x′ and x′′, t he as pect o f 

functional (53) for different balance degrees will be: 
 
Unbalanced installation (D > 0) 
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The Ci integration co nstancies ar e d etermined u sing 

relations (67) and (68). 
 
Statically balanced installation (D = 0) 
 

( ) ( ) ( ) ( )222
3 4 3 44 12 2 6= + + + +∑ ∑f x,a A A m C C C C m (82) 

 
The Ci integration constancies are determined using relation 

(69). 
 
Dynamically balanced installation (D < 0) 
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The C i integration co nstancies ar e d etermined u sing 

relations (69) and (70). 
Therefore, considering the t hree p hases o f t he t ransport 

cycle, the numerator of expression (75) of the equivalent force 
may be written as follows: 
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Considering the large volume o f c alculations, th e d igital 
integration of the components of expression (83) is imposed.  

VII. EXAMPLE 1 

Based on the proposed method a , C language software has 
been developed. Software which was t ested for an extraction 
installation with cages with the following parameters: 

– practical load extracted during a race: 
Qu = 6000 kg; 
– extraction depth: 
H = 480 m; 
– the sum of reduced masses: 
Σ m = 66368 kg; 
– specific weight of the extraction cable: 
q = 5,77 kg/m; 
– specific weight of the balance cable: 
q1 = 6,72 kg/m; 
– maximum acceleration at starting: 
a1 max = 0,8 m/s2; 
– maximum acceleration in breaking:  
a3 max = 1 m/s2; 
– maximum extraction speed: 
vmax = 9,35 m/s; 
– operational period of extraction containers: 
T = 62 s; 
– pause period between races: 
tp = 20 s; 
– transmission efficiency: 
η = 0,92. 
     In order to obtain a m aximum efficiency, the following have 

been considered: 

0 0= = = ⋅2
1 3

t   ,6 and t  t  ,2 T
T

 

Eliminating q1 for the unbalanced case and considering q1 = 
q for th e s tatically balanced o ne, m inimum v alues o f t he 
equivalent force an d t he act uating p ower h ave r esulted w ith 
approximately 10% smaller than the classic method. 

Figure 5 presents a print screen of the results obtained. 
 

 
Fig.5 Print screen of obtained results for an extraction 

installation with cages 
 

VIII. THE CASE OF MULTICABLE VERTICAL TRANSPORT 
INSTALLATIONS POWERED BY A CONTINUOUS CURRENT MOTOR 

For this kind of installation, the general equation of dynamics 
is: 
 

( )( )1 1 2 = ± + − − ± −   ∑u c sch c uF kQ g Q nq n q H x g a m Q gα β  (85) 
 

It is the case of several e xtraction installations with tilting 
buckets and cages, due to the fact that in the beginning and the 
end o f t he t ransport cy cle o ne o f t he t ransport containers is 
found on the interior of the guiding rails of the tower, some of 
the w eight i s t aken b y it, th erefore th e te nsion in  th e c able 
decreases o n t he m entioned b ranch. Mo reover, due to the 
beginning of the evacuation process before i ts complete stop, 
the useful load varies as well during this period. 

Putting together the terms from relation (84), the following 
form is obtained: 
 

( ) ( )( )1 1 2= + − + − − + ∑u c sch c uF kQ Q Q g nq n q H x g a mα β  (86) 
 

Considering: 
 

( )1 = +u c schA kQ Q gα  
 

( )2 = + −u c sch c uA kQ Q Q gα β  
 

= uA kQ g  
 

( )1 1= −D nq n q g  
 

2= +e bH H h  
 
where: 
- He  - is the level difference between the transport horizons; 
- hb - is the height of the silo. 
For: 
t = 0;  αc ≥ 0;  and βc = 0 
t ≥ t0;  αc = 0   ( t0 is th e m ovement p eriod o f th e empty 

container within the guiding rail) 
t < T;  βc = 0 
t = T;  βc >0  (0,3 - 0,75) 
Squaring up expression (85) it results: 
 

( )

2 2 2 2 2 2 2

22

2 4 4

2 2 4

= + + − − + +

+ + − +∑ ∑ ∑ ∑
i i i

i

F A A DH D H A Dx aD Hx D x
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(87) 

 
Replacing t he ex pression o f t he f orce i n f unctional ( 50), it 

results a relation similar to (52) where the value of Ai may either be 
A1, A2 or A depending on the transport phase: 
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4 4
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 (88) 
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The ex tremis of f unctional ( 88) ar e d etermined w ith t he 
same r elations as  i n t he cas e p resented ab ove f or different 
balancing degrees, but n ew r estrictions ap pear d uring t he 
starting and the ending period of a transport cycle. 

The case of a f ive p hase ex traction cy cle u sing t he s ame 
constancies: 

– During the movement o f t he e mpty t ransport c ontainer 
within the guiding rails: 

( ) ( ) 00 0= =x ; x t h  
 
( ) ( ) ( ) ( )0 0 00 0 0= = = =' 'x v ; x t v t v  (89) 
 
– During the second period (acceleration): 

( ) ( )1 1 0 1 0 1= + = +x t h ; x t t h h  
 
( ) ( ) ( ) ( )1 1 1 0 1 0 1= = + = + =' '

maxx t v t v ; x t t v t t v  (90) 
 
– During the third period (constant speed operation): 

( ) ( )0 1 0 1 0 1 2 0 1 2x t t h h ; x t t t h h h+ = + + + = + +  
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– During the fourth period (acceleration): 
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– During the movement period of t he f ull b ucket i n t he 

guiding rail: 
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where: 

0 1 2 3 4

0 1 2 3 4

+ + + + =
+ + + + =

t t t t t T
h h h h h H

      

The used optimisation model is  an extension of expression 
(75): 
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Imposed restrictions during the periods: 
– For the starting period: 
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– For the acceleration period: 
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– For the constant speed operation period: 
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– For the deceleration period: 
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 (98) 

 
– For the period o f th e m ovement o f th e f ull c ontainer 

within the guiding rail: 
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 (99) 

 
Considering the 5 phases of the transport, the numerator of 

expression (93) of the equivalent force becomes: 
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 (100) 

 
in t he e xpression o f the functional f(x,a) measure Ai will 

have the following values depending on the phase of transport: 
– in moment t = 0: Ai = A1 = (kQu + αcQsch)g 
– in phase 0 < t < t0:  Ai = A = kQug 
– in phase t = (t0) ÷ (t0 + t1):  Ai = A = kQug 
– in phase t = (t0 + t1) ÷ (t0 + t1 + t2): Ai = A = kQug 
– in phase t = (t0 + t1 + t2 ) ÷ (t0 + t1 + t2 + t3): Ai = A = kQug 
– in (t0 + t1 + t2 + t3) < t < T: Ai = A = kQug 
– in moment t =T: Ai = A2 = (kQu + αcQsch - βc Qu)g 
 

IX. EXAMPLE 2 
Based on the proposed method a software in C language has 

been d eveloped, s oftware which has b een t ested f or a 
multicable e xtraction in stallation w ith th e f ollowing 
parameters:  

- practical load extracted during a race: 
     Qu = 12.000 kg; 

         - the weight of the tilting bucket: 
     Qsch = 18.000 kg; 

 - extraction depth: 
       H = 913 m; 
 - the sum of reduced masses: 
       Σ m =  89.000 kg; 
 - the specific weight of an extraction cable: 
       q = 10.6 kg/m; 
 - the number of extraction cables: 
       n = 2; 
 - the specific weight of a balance cable: 
       q1 = 10.4 kg/m; 

- the number of balance cables: 
        n1 = 2; 

- maximum extraction speed: 
        vmax = 12 m/s; 

- the length of the discharge guiding rails: 
        h0 = h4 = 2 m; 

 - maximum acceleration during the starting period:   
        a1 = 0,8 m/s2; 

 - maximum deceleration during breaking: 
       a3 = 1,0 m/s2; 

- the exit speed from the guiding rail of the empty tilting 
bucket: 

v0 = 2,5 m/s; 
- the entering speed in  the guiding rail o f the full tilting 

bucket: 
v4 = 1,5 m/s; 

 - the movement period of the extraction containers:  
        T = 87 s; 

 - pause period between the races: 
       tp = 20 s; 

- transmission efficiency: 

η = 0,85; 
 - the coefficients characterising the extraction container:

        k = 1,15; αc = 0,15; βc = 0,5. 
Figure 6 presents a print screen of the results obtained. 
 

 
Fig.6 Results obtained for the multicable extraction 

installation  
 

Figures 7...18 present t he v ariation d iagrams o f t he speed 
and acceleration for T [87,109] s∈ . 

 
Fig.7 The variation of speed and acceleration for T=87 s 

 

 
Fig.8 The variation of speed and acceleration for T=89 s 
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Fig.9 The variation of speed and acceleration for T=91 s 

 

 
Fig.10The variation of speed and acceleration for T=93 s 

 

 
Fig.11 The variation of speed and acceleration for T=95 s 

 
Fig.12 The variation of speed and acceleration for T=97 s 

 

 
Fig.13 The variation of speed and acceleration for T=99 s 

 

 
Fig.14 The variation of speed and acceleration for T=101 s 
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Fig.15 The variation of speed and acceleration for T=103 s 

 

 
Fig.16 The variation of speed and acceleration for T=105 s 

 

 
Fig.17 The variation of speed and acceleration for T=107 s 

 
Fig.18 The variation of speed and acceleration for T=109 s 

 

X. CONCLUSIONS 
• Analysing the optimisation trials of electric operation of 

hoisting installations, presented in the speciality literature, it is 
observed t hat t hese ar e v alid o nly f or trapezoid tachograms 
(with constant accelerations an d l inear v ariation o f s peed i n 
extreme periods). There is no certainty that this type of 
variation i s o ptimum f or e nsuring t he va lue o f t he minimum 
power. Imposing from the be ginning a t rapezoid form of  t he 
tachogram d oes n ot h ave an y s cientific j ustification, being 
made empirically; 

• In order to minimise the actuating power of the extraction 
installations, the method o f the calculus of variations is used, 
establishing an adequate mathematical model; 

• In or der t o u se t he pr oposed optimisation method, the 
definition of the o ptimisation a nd r estriction f unctional w as 
imposed. T he o ptimisation f unctional is  b ased o n th e 
peripheral f orce of the cable act uating organism results from 
the general equation of dynamics; 

• The s olutions o f E uler-Poisson equations of  t he 
optimisation functional differ depending the degree of balance 
of the installation; 

• The digital integration of the functional of the equivalent 
force has to be m ade s eparately, f or each  p hase o f the 
extraction, considering the d ifference between the restrictions 
characterising the distinct phases; 

• Using t he t hird d egree q uadrate formula f or th e digital 
integration o f th e f unctional co rresponds co mpletely t o the 
precision required by the calculations; 

• The im portant d etermination v olume f or in tegrating the 
optimisation functional implies the u se o f c omputers. T he 
software developed i n C  l anguage an d al so ex perimented 
proved itself to be a fast tool for practical calculations; 

• The d eveloped cal culation s oftware al low the fast 
determination o f the minimum actuating power for any mono 
or multi c able, w ith tiltin g c ontainers or c age extraction 
installation (unbalanced, statically or dynamically balanced); 

• Following the u se o f t he d eveloped s oftware f or t he 
extraction installations with c ages o r tiltin g c ontainers, 
considering t he r eal ch aracteristic p arameters, v alues of the 
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actual p ower r esulted w ith 5 0 - 70 kW  s maller t han w hen 
classical methods were used, representing therefore a r elative 
decrease of power and co nsequently o f t he co nsumption o f 
energy with approximately 10%; 

• The proposed method is an operative and precise one and 
may s erve to  v erify a nd d esign th e extraction installations, 
determining the optimum functional parameters. 
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