Minimising the actuating power of vertical transport installations by optimisation of dynamic and kinematics parameters

Florin Dumitru Popescu

Abstract

The s pecific en ergy co nsumption is mainly influenced b y k inematics an d dynamic measures of vertical transport in stallations a sw ell a sbythecompatibility of different c omposing pa rts a nd t heir subcomponents. The optimisation o fk inematics an d dynamic parameters characterising at ransport cy cle is d ecisive considering the energy c onsumption. A lso c onsidering the operation ofthe vertical transport installations, as well as the character of the variation of kinematics and dynamic parameters during a race, it has been co nsidered that o ne of the adequate optimisation methods of these p arameters is the cal culus of variations. In order to apply this calculus, the definition of the optimisation functional and r estrictions is im posed. The accel eration an d deceleration periods during each r ace of avertical transport installation may be considered a $\mathrm{s} p$ eriods oftr ansitional processes where kinematics and dynamic measures variations take p lace (acceleration, s peed and forces) as well as some electric measures (actuating motor's current). One of the basic performance p arameters oft he o peration oft he v ertical transport installations is the s pecific e nergy c onsumption during a cycle. It therefore means that the optimisation of the transport cycle related to this parameter may be realised using a functional with a function und er the integral depending on the electric energy consumption during a race.

Keywords- acceleration, d ynamically b alanced, optimization, p ower, s tatically b alanced in stallation, tachograms, unbalanced installations.

I. Kinematics parameters optimisation

TWO constant accel eration p hase t achograms are used in the case of r educed t ransports ystems an d ar e characterised by the lack of a constant speed period.

A. Constant acceleration tachograms

Therefore, the process is composed of only two periods of time: the acceleration phase t 1 and the deceleration phase t 2 (figure 1).

[^0]

Fig. 1 Speed variation trajectories for the two phase tachogram

The discovery of a law of variations is imposed either for $i(t)$ or for $a(t)$, for which the transition of the system from the point of balance A to the point of balance B to be realised in the shortest period of time possible. According to figure 1, for the tr ansition in tim e ofthes ystem f rompoint A to B , trajectory 1 needs to be followed. T he s peed of m ovement needs to be maximum:

$$
\begin{equation*}
V_{m} T=H \tag{1}
\end{equation*}
$$

where, H is the distance undergone. If H is constant and $T=$ min, then: $V_{m}=V_{m \text { max }}$.

In order for the average speed to have a maximum value, the acceleration is imposed to be maximum $a_{\max }$. It is also valid for the deceleration period t_{2}. If on one part of the trajectory (for instance CD), the accel eration is s maller than the maximum admitted one, the average speed decreases therefore increasing the period of the transitional process T^{\prime} (line 2). In th is case, for t he o ptimum p rocess, t he accel eration is as taircase function:
$\left.\begin{array}{l}a(t)=a_{m} ; \quad 0<t<\frac{T}{2} \\ a(t)=-a_{m} ; \quad \frac{T}{2}<t<T\end{array}\right\}$
The 1 aw v ariation o fs peed an d space i s obtained by integrating the equations of movement va riation c onsidering the equations (2):
$v(t)=\int_{0}^{T} a(t) d t$
$h(t)=\int_{0}^{T} v(t) d t$

Therefore:
$\left.\begin{array}{l}\left.\begin{array}{l}v(t)=a_{m} t \\ h(t)=\frac{1}{2} a_{m} t^{2}\end{array}\right\} \quad 0<t<\frac{T}{2} \\ v(t)=a_{m}(T-t) \\ h(t)=a_{m}\left(T t-\frac{T^{2}}{2}-\frac{T^{2}}{4}\right)\end{array}\right\} \quad \frac{T}{2}<t<T$
For the d etermination of the period of time T, the lim it condition is u sed $h(T)=H$.I nt hisw ay $h(T)=a_{m}\left(T^{2}-\frac{T^{2}}{2}-\frac{T^{2}}{4}\right)=a_{m} \frac{T^{2}}{4}$ and:
$T=2 \sqrt{\frac{H}{a_{m}}}$
For $t=\frac{T}{2}$, speed v reaches the maximum value:
$V_{\max }=a_{m} \frac{T}{2}=a_{m} \sqrt{\frac{\mathrm{H}}{\mathrm{a}_{\mathrm{m}}}}$

B. Variable acceleration tachograms

The continuous v ariation o fthea cceleration will be replaced with a variation in steps within the same phase of the trajectory for a period of time T of the process (figure 2), in a finite number of equal intervals with a duration of:
$\tau=\frac{T}{n}$

It is supposed that acceleration a (as a command value) is constant w ithin e ach s ub-interval, w ith v alues c omprised between $a_{1}, a_{2}, \ldots, a_{n}$. By divide the acceleration, the following may be written:
$W^{*}=\sum_{i=1}^{n} a_{i}^{2} \tau$
depending on n variables.
Out of all the staircase functions $a(t)$ the chosen one is that for which t he m inimum of t he W^{*} sum is obt ained a nd simultaneouslye nsuring the compliance with the limit conditions:
$\left.\begin{array}{ll}v(0)=0 ; & v(T)=v_{k}=0 \\ h(0)=0 ; & h(T)=h_{k}=H\end{array}\right\}$

Fig. 2 Variation in steps of the acceleration within the same phase

Permanently d ecreasing t he d uration ofintervals τ, as a result of a limit transition, a continuous dependence $a(t)$ will be obtained which minimises the integral W. Therefore, this is the optimum command condition.

The speed v g iven b y r elation (3), c onsidering the in itial condition $v(0)=0$, v aries acco rding to a d otted line (figure 2), consisting of parts of lines the coordinates of which $t=0, t$ $=\tau, t=2 \tau, \ldots, t=T$ are:
$v_{0}=v(0)=0 ;$
$v_{1}=v(\tau)=a_{1} \tau ;$
$v_{2}=v(2 \tau)=\left(a_{1}+a_{2}\right) \tau ;$
$v_{n}=v(n \tau)=\sum_{i=1}^{n} a_{i} \tau=0$

The movement h will be composed of sections of parabola. Considering the in itial condition $h(0)=0$, based on relation (12) h_{i} ordinates in points $t=0, t=\tau, t=2 \tau, \ldots, t=T$ are obtained.
$h_{0}=h(0)=0$;
$h_{1}=h(\tau)=\frac{\tau}{2} v_{1}=\frac{\tau^{2}}{2} a_{1} ;$
$h_{2}=h(2 \tau)=\frac{\tau}{2} v_{2}=\tau^{2} a_{1} ;$
$h_{3}=h(3 \tau)=\frac{\tau}{2} v_{3}=\tau^{2}\left(2 a_{1}+a\right) ;$
$h_{n}=h(T)=\frac{\tau}{2} v_{n}+\tau^{2} \sum_{k=1}^{i-1}(n-k) a_{k}=h_{k}$

In order to determine the conditioned extreme of sum W^{*} considering the relations (12) and (13), it is sufficient enough to determine the unconditioned extreme of the auxiliary function V :
$V=W^{*}+\lambda_{1} v_{k}\left(a_{i}\right)+\lambda_{2} h_{k}\left(a_{i}\right)$
where λ_{1} and λ_{2} undetermined L agrange m ultipliers, determining the limit conditions.

Therefore,
$V=\tau \sum_{\mathrm{i}=1}^{\mathrm{n}} a_{i}^{2}+\lambda_{1} \tau \sum_{\mathrm{i}=1}^{\mathrm{n}} a_{i}+\lambda_{2} \frac{\tau^{2}}{2} \sum_{\mathrm{i}=1}^{\mathrm{n}} a_{i}+\lambda_{2} \tau^{2} \sum_{\mathrm{i}=1}^{\mathrm{n}-1}(n-i) a_{i}$
The conditions needed for the extremes, is expressed by the system $\frac{\partial \mathrm{V}}{\partial \mathrm{a}_{\mathrm{i}}}=0 ; \quad i=1, \ldots, n$.

Considering the expression (15), the following are obtained:
$\frac{\partial \mathrm{V}}{\partial_{\mathrm{i}}}=2 \tau a_{i}+\lambda_{1} \tau+\frac{\lambda_{2}}{\mathrm{a}} \tau^{2}+\lambda_{2} \tau^{2}\left(n-i_{2}\right)=0$

From where:
$a_{i}=-\frac{\lambda_{1}}{2}-\frac{\lambda_{2}}{4} \tau-\frac{\lambda_{2}}{2} \tau(n-i)$

If f or $\mathrm{T}=\mathrm{ct}$, the d uration of th e in terval τ decreases unlimited, and the number of intervals n tends towards infinity, then a_{i} passes i nto $a(t)$, a nd τ_{i} in t. Considering $n \cdot \tau=T$, it results:
$\mathrm{a}(\mathrm{t})=-\frac{\lambda_{1}}{2}-\frac{\lambda_{2}}{2}(\mathrm{~T}-\mathrm{t})$
In order to determine the Lagrange multipliers the following limit conditions are applied:

For $t=0 ; a(0)=a_{a}$; and $t=t_{a} ; a\left(t_{a}\right)=0$, where:
$a_{a}-$ is the in itial value a nd the la rgest of the command measure (acceleration); co nsidering an o ptimum process it varies linearly from $+a_{a}$ to $-a_{a}$;
t_{a} - is t he m oment t he accel eration p asses t hrough the neutral.

The f ollowing e quation s ystem r esults a pplying these conditions for expression (18):

$$
\left.\begin{array}{l}
a_{a}=-\frac{\lambda_{1}}{2}-\frac{\lambda_{2}}{2} T \\
0=-\frac{\lambda_{1}}{2}-\frac{\lambda_{2}}{2}\left(T-t_{a}\right)
\end{array}\right\}
$$

Solving t he s ystem a ccording the unknown λ_{1} and λ_{2}, it results: $\lambda_{1}=2 a_{a} ; \quad \lambda_{2}=-\frac{2 a_{a}}{t_{a}}$.

Considering that $T=2 t_{a}$ and $a(T)=-a_{a}$, equation (18) becomes $a(t)=-a_{a}+\frac{a_{a}}{t_{a}}\left(2 t_{a}-t\right)$.

Therefore, expression (18) may be written:
$a(t)=a_{a}\left(1-\frac{t}{t_{a}}\right)$

It is observed that the o ptimum la wo fv ariation of acceleration both during acceleration as w ell as d uring deceleration is limited, imposing a parabola variation of speed during these periods.

Integrating equation (19), speed, s pace an den ergy dissipated during tr ansitional s tarting a nd b reaking p eriods, laws of variations are obtained:

$$
\begin{align*}
& v(t)=\int_{0}^{t} a(t) d t=\int_{0}^{t}\left[a_{a}\left(1-\frac{t}{t_{a}}\right)\right] d t=a_{a} t\left(1-\frac{t}{t_{a}}\right) \tag{20}\\
& h(t)=\int_{0}^{t} v(t) d t=\int_{0}^{t}\left[a_{a} t_{a}\left(1-\frac{t}{t_{a}}\right)\right] d t=a_{a} \frac{t_{2}}{2}\left(1-\frac{t}{3 t_{a}}\right) \tag{21}\\
& W(t)=\int_{0}^{t} a^{2}(t) d t=\int_{0}^{t}\left[a_{a}\left(1-\frac{t}{t_{a}}\right)\right]^{2} d t=a_{a}^{2} t_{a}\left(1-\frac{t}{t_{a}}+\frac{t^{2}}{3 t_{a}}\right) \tag{22}
\end{align*}
$$

The t_{a} and a_{a} constancies are determined from the limit conditions:
$v(T)=a_{a} T\left(1-\frac{T}{t_{a}}\right)=0$
$h(T)=a_{a} \frac{T^{2}}{2}\left(1-\frac{T}{3 t_{a}}\right)=H$

From the above equation it results:
$t_{a}=\frac{T}{2} ; \quad a_{a}=6 \frac{H}{T^{2}}$

The a bove case presents the starting and breaking transitional processes considering at wo p hase t achogram. Introducing the speed limit imposed by the operational norms of v ertical tr ansport in stallations, $v(t) \leq v_{\max a d m}$ then t he tachogram t ransforms i nto at hree p hase o ne where $t_{a}^{\prime}<t_{a}$ (figure 3).

It is observed that the duration of the transitional periods t_{1} (acceleration) and t_{3} (deceleration) depend on the level of the maximum ad opted speed, n amely on the ordinate intersected by the optimum variation curve of the speed (parabola) with a horizontal line corresponding to the maximum speed.

Fig. 3 Speed limit tachogram

In the same time, it results that the acceleration needn't be kept at a constant level, imposing a smooth linear variation.

II. DYNAMIC PARAMETERS OPTIMISATION

A method for the optimisation of the e lectric o peration is constituted by adopting a trapezoidal tachogram and considering a constant static torque according to the criteria of equivalent power. The o bjective w as t he d evelopment of a n opt imum trapezoidal tachogram for the minimisation of the equivalent power (figure4). The mathematical model used is based on relative coordinates with the purpose of generalising the results.

Fig. 4 Analysed tachogram

The following have been considered for the time reference:
where:
T represents the mechanical time constancy:
$T=\frac{I \cdot \omega_{N}}{M_{N}}=\frac{m \cdot v_{N}}{F_{N}}$
where:

- I is the inertia moment of moving elements;
- m the weight of the moving elements;
- M_{N} and F_{N} the peripheral momentum and force;
- ω_{N} and v_{N} the angular and peripheral speed of the operating mechanism.

For the speed, torque and power, their nominal values have been considered as reference values:

$$
\begin{equation*}
v=\frac{\omega}{\omega_{N}}=\frac{v}{v_{N}} ; \quad \mu=\frac{M}{M_{N}}=\frac{F}{F_{N}} ; \quad \rho=\frac{P}{P_{N}} \tag{28}
\end{equation*}
$$

The following r elations r esult for t he movement and acceleration:
$t=\frac{\theta}{T \omega_{N}}=\frac{H}{T v_{N}} ; \quad v^{\prime}=\frac{\omega^{\prime} T}{\omega_{N}}=\frac{v^{\prime} T}{v_{N}}$
Therefore t he m ovement eq uation i nab solute m easures $M=M_{s}+\left|\frac{d \omega}{d t}\right|$ may be written in relative measures as:
$\mu=\mu_{s}+\frac{d v}{d \tau}$
The expressions of speed and space are:
$v=\int v^{\prime} d t ; \quad h=\int v d t$

The power in relative measures is:
$\rho=\mu v=\left(\mu s+v^{\prime}\right) v$

The total movement of a trapezoidal tachogram, after making the integrals (31) is:
$x_{0}=\frac{1}{2} v \tau_{1}+v \tau_{2}+\frac{1}{2} v \tau_{3}$
Introducing a dimensional variables:
$\alpha=\frac{\tau_{1}}{\tau_{2}} ; \quad \beta=\frac{\tau_{3}}{\tau_{1}} ; \quad 0<\alpha ; \quad \beta<1$

The periods of the tachogram become:
$\tau_{1}=\alpha \tau_{2} ; \quad \tau_{3}=\beta \tau_{1} ; \quad \tau_{2}=[1-(\alpha-\beta)] \tau_{1}$

And the regime movement and speed will be:
$x_{0}=\left[1-\frac{1}{2}(\alpha+\beta)\right] v \tau_{1}$
$v=\frac{x_{0}}{\tau_{1}} \cdot \frac{1}{1-\frac{1}{2}(\alpha+\beta)}$

The corresponding accelerations f or the t wo en ds of t he tachogram are:

$$
\begin{align*}
& v_{1}^{\prime}=\frac{\mathrm{v}}{\tau_{1}}=\frac{1}{\alpha\left[1-\frac{1}{2}(\alpha+\beta)\right]} \cdot \frac{\mathrm{x}_{0}}{\tau_{1}^{2}} \tag{38}\\
& v_{3}^{\prime}=\frac{\mathrm{v}}{\tau_{3}}=\frac{1}{\beta\left[1-\frac{1}{2}(\alpha+\beta)\right]} \cdot \frac{\mathrm{x}_{0}}{\tau_{1}^{2}}
\end{align*}
$$

Equivalent torque:

$$
\begin{equation*}
\left.\mu_{e c h}^{2}=\frac{1}{\tau_{\mathrm{c}}} \int_{0}^{\tau c} \mu^{2} d \tau=\frac{\varepsilon}{\tau_{1}} \int_{0}^{\tau l} \mu_{\mathrm{s}}+\dot{\mathrm{v}}\right)^{\prime} d \tau \tag{39}
\end{equation*}
$$

Where ε is the connection period:
$\varepsilon=\frac{\tau_{l}}{\tau_{c}}$
For a trapezoidal tachogram, it r esults the following equivalent torque:

$$
\begin{equation*}
\mu_{e c h}^{2}=\varepsilon\left[\mu_{0}^{2} \frac{\frac{1}{\alpha}+\frac{1}{\beta}}{\left[1-\frac{1}{2}(\alpha+\beta)\right]^{2}} \cdot \frac{\mathrm{x}_{0}^{2}}{\tau_{1}^{4}}\right] \tag{41}
\end{equation*}
$$

Equivalent power depending on the torque and speed:
$p_{N}=v \sqrt{\frac{1}{\tau_{\mathrm{c}}} \int_{0}^{\tau c} \mu^{2} d \tau} \quad p_{N}^{2}=\varepsilon \mathrm{x}_{0}^{4}\left[\frac{\mu_{0}^{2} \cdot\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)}{\tau_{1}^{4} \cdot \tau_{0}^{2} \cdot\left[1-\frac{1}{2}(\alpha+\beta)\right]^{4}}\right]$

The extreme of the equivalent power is obtained for $\alpha=\beta$:
$p_{N}^{2}=\varepsilon\left[\mu_{0}^{2} \frac{1}{(1-\alpha)^{2}}+\frac{2}{\alpha(1-\alpha)^{4}} \cdot \frac{\mathrm{x}_{0}^{2}}{\tau_{1}^{4}}\right] \frac{\mathrm{x}_{0}^{2}}{\tau_{1}^{2}}$
The minimum condition of the equivalent power results from cancelling the derivative of the power with the restrictions: $v \leq 1 ; \mu$ $\leq \mu_{\text {max }} ; \mu_{\text {ech }} \leq 1$:
$\frac{\partial \mathrm{p}_{\mathrm{N}}^{2}}{\partial \alpha}=\frac{\mu_{0}^{2}}{x_{0}^{2}} \tau_{1}^{4} \alpha^{2}(1-\alpha)^{2}-(1-5 \alpha)=0$

For the particular case of no-load ope ration ($\mu_{0}=0$), it r esults the optimum value of the power:
$\alpha=\beta=0,2$

The regime speed:

$$
\begin{equation*}
v=1,25 \frac{x_{0}}{\tau_{l}} \tag{46}
\end{equation*}
$$

Minimum power:
$P_{N \text { min }}=4,94 \sqrt{\varepsilon} \frac{x_{0}^{2}}{\tau_{l}^{3}}$

In case of load operation $\left(\mu_{0} \neq 0\right)$ it results:

$$
0<\alpha_{o p t} \leq 0,2
$$

Analysing the above presented method, the main conclusion is that it is a p ractical, o perative method but it is valid o nly for a linear v ariation of s peed. T here is n o cer tainty that this type of variation is optimum for e nsuring t he m inimum va lue of s peed. Moreover, choosing the trapezoidal tachogram is not scientifically justified, being m ade o nly em pirically based o n ex perience. Therefore, there may be another form of the operational diagram to ensure the minimum value of the actuating power.
III. ESTABLISHING THE OPTIMISATION FUNCTIONAL FOR SINGLE CABLE VERTICAL TRANSPORT INSTALLATIONS POWERED BY AN ASYNCHRONOUS MOTOR

The actual peripheral force is:
$F_{e f}=\sqrt{\frac{\int_{0}^{T} F^{2} d t}{T_{e f}}} \approx \sqrt{\frac{\sum F_{i}^{2} t_{i}}{T_{e f}}}[N]$

Because function $F(t)$ varies during different phases, the integral $\int_{0}^{T} F^{2} d t$ is solved separately for each phase:
$\int_{0}^{T} F^{2} d t=\sum_{0}^{n} \int_{0}^{t i} F_{i}^{2} d t$

According to the general equation of the dynamics of vertical transport installations, th ef orce a $t p$ eriphery ofther eeling organism is expressed using the following relation:

$$
\begin{equation*}
F=\left[k Q_{u}+\left(q-q_{1}\right)(H-2 x)\right] g \pm a \sum m \quad[N] \tag{50}
\end{equation*}
$$

The functional based on which the electric energy consumption may be minimised during a race, may be established as follows:
$\exists(x, a)=\int_{0}^{T} f(x, a) d t=\int_{0}^{T} F_{i}^{2} d t$

The peripheral force, are:
$F=k Q_{u} g+\left(q-q_{1}\right) g(H-2 x)+a \sum m$
$F=A+D(H-2 x)+a \sum m=A+D H-2 D x+a \sum m$
where $A=k \cdot Q_{u} \cdot g ; D=\left(q-q_{1}\right) g$; only the positive sign has been considered for the acceleration.

Squaring up expression (52), it results:

$$
\begin{aligned}
F^{2}= & A^{2}+2 A D H+D^{2} H^{2}-4 A D x-4 D^{2} H x+4 D^{2} x^{2}+2 A a \\
& \sum m+2 D H a \sum m-4 D x a \sum m+a^{2}\left(\sum m\right)^{2}
\end{aligned}
$$

By replacing the expression of the force it results:

$$
\begin{gathered}
f(x, a)=(A+D H)^{2}-4 A D x-4 D^{2} H x+4 D^{2} x^{2}+ \\
+2 A a \sum m+2 D H a \sum m-4 D x a \sum m+a^{2}\left(\sum m\right)^{2}
\end{gathered}
$$

or:

$$
\begin{align*}
& f(x, a)=(A+D H)^{2}-4 D(A+D H) x+4 D^{2} x^{2}+ \\
& \quad+2 a(A+D H) \sum m-4 D x a \sum m+a^{2}\left(\sum m\right)^{2} \tag{53}
\end{align*}
$$

Using the relation between the actual force and the quantity of heat developed w ithin t he r eeling o ft he m otor d uring a transportation cycle, the actual force ex pression (equivalent) may be used as an optimisation cr iterion. Therefore, the act ual force there is the following relation:
$F_{e f}=\sqrt{\frac{\int_{0}^{T} F^{2} d t}{T_{e f}}}=\sqrt{\frac{\int_{0}^{T} f(x, a) d t}{T_{e f}}}$

The beginning and the end of a transport cycle are characterised by the following conditions:
$x(0)=0 ; x(T)=H ; v(0)=0 ; x^{\prime}(T)=v(T)=0$

IV. RESTRICTIONS ON THE TRANSPORT CYCLE

In optimising the parameters of thetr ansportcycle the respect of a s eries oft echnical prescriptions is i mposed in order to e nsure t he c ontinuous o peration inf ulls afety conditions.

A. Kinematics restrictions

The variation of kinematics parameters (speed and acceleration) during at ransport cy cle is d efined b yt he iagram of speed (tachogram) as well as by the diagram of the acceleration, characterised by the relations:

$$
\begin{gather*}
\left.\int_{0}^{T} x^{\prime}(t) d t=\int_{0}^{T} v(t) d t=H \leftrightarrow a\right) \\
\left.x^{\prime}(0)=v(0)=x^{\prime}(T)=v(T)=0 \leftrightarrow b\right) \\
\left.x^{\prime}(t)=v(t) \leq v_{a d m} \leftrightarrow c\right) \\
\left.x^{\prime \prime}(t)=\frac{d v(t)}{d t}=a \leq a_{a d m} \leftrightarrow d\right) \tag{56}\\
\left.x^{\prime \prime \prime}(t) \leq \rho_{a d m} \leftrightarrow e\right) \\
\left.\frac{t_{2}}{T} \geq 0.6 \leftrightarrow f\right)
\end{gather*}
$$

Conditions $(56, a)$ and $(56, b)$ define the requirements regarding movement and speed: at the end of the cycle, the space undergone by the transport enclosures has to be equal to the length of the transport race; the speed, both at the beginning of the movement as well as at the end of the race has to be null.

Conditions (56, c) an $d(56, d)$ ar e defined bythe technical prescriptions regarding the speed limit and acceleration with their maximum admissible values.

Condition (56, e) limits the maximum value of the variation of the force within the time unit, s eldom us ed m easure d uring t he automated control of vertical transport installations.

Condition $(56, \mathrm{f})$ is imposed by the cooling off of the electric motors through their o wn ve ntilation. T he d uration oft he movement with constant speed (maximum) it is recommended to be at least 60% from the movement of a transport race.

B. Restrictions regarding the actuating motor

The power of the actuating motor needs to satisfy the following criteria:
$P_{e f}=\frac{F_{e f} \cdot v_{\max }}{1000 \eta_{a}}=\frac{v_{\max }}{1000 \eta_{a}} \sqrt{\frac{\int_{0}^{T} F^{2} d t}{T_{e f}}} \leq P_{M}$
$\frac{P_{\max }}{P_{e f}}=\frac{F_{\max }}{F_{e f}} \leq \gamma$
where:
γ is the overload a dmissible c oefficient ($y=1,6 \div 1,8$ for asynchronous m otors; $y=1,8 \div 2,0$ for continuous c urrent motors);
$F_{\text {max }}$ is the maximum value of the p eripheral force ap pearing during the transport race;
$P_{\max }$ is the power corresponding to the maximum force.
Two models ba sed on relations (54) may be used for the optimisation:

- The optimisation model with the limit conditions $(56, a)$ and $(56, b)$;
- The optimisation model with a ll the kinematics restrictions imposed by the motor given by relations (54) and (55).

The first model covers criterion (48) and the limit conditions (55). A practical model needs therefore to consider all the restrictions, such as the second one foresees.

Therefore t he am endment o ff unctional (48) a nd the optimisation criterion (52) needs to be made, dividing the transport cycle in several according to the expression:
$F_{e f}=\sqrt{\frac{\sum_{i=1}^{n} \int_{t_{i i}}^{t_{f}} F^{2} d t}{T_{e f}}}=\sqrt{\frac{\sum_{i=1}^{n} \int_{t_{i i}}^{t_{f i}} f(x, a) d t}{T_{e f}}} \quad[N]$
where:
$-n$ is the number of phases of the extraction cycle;
$-t_{i i}$ is the beginning of all n phases;
$-t_{f i}$ is the ending of all n phases.

V. THE EXTREMES OF THE OPTIMISATION FUNCTIONAL; EULER-POISSON EQUATIONS OF THE FUNCTIONAL

The es tablishment of t he f unction ch aracterising t he 1 aw of variation of s pace $x(t), \mathrm{c}$ onsidering th at th e in tegral $\exists=\int_{a}^{b} f\left(x, y, y^{\prime}\right) d x$ represents a superior order function related to the first derivative, may be made using the Euler-Poisson equation. The equation (59) adapted for the present case is:

$$
\begin{equation*}
\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial x^{\prime}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial f}{\partial x^{\prime \prime}}\right)=0 \tag{60}
\end{equation*}
$$

Obtaining therefore:

$$
\begin{equation*}
\frac{d^{4} x}{d t^{4}}+\frac{4 D}{\Sigma m} \frac{d^{2} x}{d t^{2}}+\frac{16 D}{(\Sigma m)^{2}} x=\frac{2 D(A-D H)}{(\Sigma m)^{2}} \tag{61}
\end{equation*}
$$

or:
$\frac{d^{4} x}{d t^{4}}+\lambda \frac{d^{2} x}{d t^{2}}+\frac{\lambda^{2}}{4} x=\psi$
where $\lambda=\frac{4 D}{\Sigma M}$ and $\Psi=\frac{2 D(A-D H)}{(\Sigma m)^{2}}$.
Considering that the difference in weight between the transport cable and the balance one is characterised by D , three cases may be distinguished in solving the above presented equation
a) $D=g\left(q-q_{1}\right)>0$ - unbalanced installation; the roots of equation (62) are real;
b) $D=g\left(q-q_{1}\right)<0$ - dynamically b alanced in stallation; the roots of equation (62) are imaginary;
c) $D=g\left(q-q_{1}\right)=0$ - statically balanced equation.

For $D=0$, based on expressions (54) and (61) the following are obtained:
$\frac{d^{4} x}{d t^{4}}=0$

Unbalanced installation ($\mathrm{D}>\mathbf{0}$)

For this case, the solutions of equation (63), space, speed, acceleration an $d t$ he t hird d erivative of s pace in relation t o time are the following:

$$
\begin{align*}
x= & e^{\alpha t}\left(C_{1}+C_{2} t\right)+e^{-\alpha t}\left(C_{3}+C_{4} t\right)+\beta \\
x^{\prime}= & =C_{1} \alpha e^{\alpha t}+C_{2} e^{\alpha t}(1+\alpha t)-C_{3} \alpha e^{-\alpha t}+C_{4} e^{-\alpha t}(1-\alpha t) \\
x^{\prime \prime}= & =C_{1} \alpha^{2} e^{\alpha t}+C_{2} \alpha e^{\alpha t}(2+\alpha t)+C_{3} \alpha^{2} e^{-\alpha t}+C_{4} \alpha e^{-\alpha t}(\alpha t-2) \tag{64}\\
x^{\prime \prime \prime}= & \rho=\alpha^{3} e^{\alpha t}\left(C_{1}+C_{2} t\right)+3 C_{2} \alpha^{2} e^{\alpha t}-\alpha^{3} e^{-\alpha t}\left(C_{3}+C_{4} t\right)+ \\
& +3 C_{4} \alpha^{2} e^{-\alpha t}
\end{align*}
$$

where: $\quad \alpha=\sqrt{\left|-\frac{\lambda}{2}\right|} ; \quad \beta=\frac{4 \psi}{\lambda^{2}}$
C_{i} - integration constancies, $i=1 ; 2 ; 3 ; 4$.

Statically balanced installation ($\mathbf{D}=\mathbf{0}$)

For this case, the solutions of equation (63) are:

$$
\left.\begin{array}{c}
x=C_{1}+C_{2} t+C_{3} t^{2}+C_{4} t^{3} \quad x^{\prime \prime}=2 C_{3}+6 C_{4} t \tag{65}\\
x^{\prime}=C_{2}+2 C_{3} t+3 C_{4} t^{2} \quad x^{\prime \prime \prime}=6 C_{4}
\end{array}\right\}
$$

where C_{i} are integration constancies, $i=1 ; 2 ; 3 ; 4$.

Dynamically balanced equation ($\mathbf{D}<\mathbf{0}$)

in th is case, the s olutions of e quation (63) may have the following form:

$$
\begin{aligned}
x & =\cos \alpha t\left(C_{1}+C_{2} t\right)+\sin \alpha t\left(C_{3}+C_{4} t\right)+\beta \\
x^{\prime} & =v=\sin \alpha t\left(-C_{1} \alpha-C_{2} \alpha t+C_{4}\right)+\cos \alpha t\left(C_{2}+C_{3} \alpha+C_{4} \alpha t\right) \\
x^{\prime \prime} & =a=\cos \alpha t\left(-C_{1} \alpha^{2}-C_{2} \alpha^{2} t+2 C_{4} \alpha\right)-\sin \alpha t\left(2 C_{2} \alpha+C_{3} \alpha^{2}+C_{4} \alpha^{2} t\right) \\
x^{\prime \prime \prime} & =\alpha^{3}\left(C_{1}+C_{2} t\right) \sin \alpha t-\alpha^{3}\left(C_{3}+C_{4} t\right) \cos \alpha t-3 C_{2} \alpha^{2} \cos \alpha t- \\
& -3 C_{4} \alpha^{2} \sin \alpha t
\end{aligned}
$$

where: $\alpha=\sqrt{\left|-\frac{\lambda}{2}\right|}$;
C_{i} - integration constancies, $i=1 ; 2 ; 3 ; 4$.

A. Optimum transport cycle with limit conditions

Mathematically speaking, the optimisation of the transport cycle c onsists infounding t he f unction $x(t)$, the law of movement, ensuring the minimum of the integral:

$$
F_{e f}=\sqrt{\frac{\int_{0}^{T} f(x, a) d t}{T_{e f}}}=\min
$$

The case of unbalanced installations ($\mathrm{D}>\mathbf{0}$)

Based on the solution of the equation given by expression (52) a nd the i nitial conditions, a four e quation system is formed in order to determine the integration constancies. Following the solution of this equation system, the integration constancies are:

$$
\left.\begin{array}{l}
C_{1}=-C_{3}-\beta \\
C_{2}=2 C_{3} \alpha-C_{4}+\alpha \beta \\
C_{3}=\frac{a_{3}}{a_{1}}-\frac{a_{2}}{a_{1}} C_{4} \\
C_{4}=\frac{a_{1} b_{3}-a_{3} b_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\end{array}\right\}
$$

$a_{1}=e^{-\alpha T}-e^{\alpha T}+2 \alpha T e^{\alpha T}$
$a_{2}=T e^{-\alpha T}-T e^{\alpha T}$
$a_{3}=H-\beta+\beta e^{\alpha T}-\alpha \beta T e^{\alpha T}$
$b_{1}=\alpha e^{-\alpha T}+2 \alpha^{2} T e^{\alpha T}+\alpha e^{-\alpha T}$
$b_{2}=e^{-\alpha T}-\alpha T e^{-\alpha T}-e^{-\alpha T}-\alpha T e^{\alpha T}$
$b_{3}=-\alpha^{2} \beta T e^{\alpha T}$

The case of statically balanced installations $(\mathbf{D}=0)$ Proceeding analogically, based on the solution of the equation given by expression (67), the integration constancies are:
$C_{1}=C_{2}=0 ; C_{3}=\frac{3 H}{T^{2}} ; C_{4}=-\frac{2 H}{T^{3}}$

The case of dynamically balanced installations ($\mathbf{D}<\mathbf{0}$) Considering the r elations (54), t he va lues of t he integration constancies are:

$$
\begin{equation*}
C_{4}=\frac{a_{1} b_{3}-a_{3} b_{1}}{a_{1} b_{2}-a_{2} b_{1}} ; C_{3}=\frac{a_{3}}{a_{1}}-\frac{a_{2}}{a_{1}} C_{4} ; C_{2}=-C_{3} \alpha ; C_{1}=-\beta \tag{70}
\end{equation*}
$$

where:

$$
\begin{gather*}
a_{1}=\sin \alpha T-\alpha T \cos \alpha T ; a_{2}=T \sin \alpha T \\
a_{3}=H-\beta+\beta \cos \alpha T ; \\
b_{1}=\alpha^{2} T \sin \alpha T+\alpha T \cos \alpha T \tag{71}\\
b_{2}=\sin \alpha T+\alpha T \cos \alpha T ; b_{3}=-\alpha \beta \sin \alpha T
\end{gather*}
$$

B. The optimum transport cycle with all technological restrictions

The functional $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial f}{\partial y^{\prime \prime}}\right)=0 \quad$ will b e adjusted with a ll the r estrictions im posed $\mathrm{b} y$ the kinematics installation. Considering a three period transport cycle, where the second period is characterised by constant speed, the limit conditions for each period may be explained as follows:

During the first period (the acceleration period)

$$
\begin{equation*}
x(0)=0 ; x\left(t_{1}\right)=h_{1} ; x^{\prime}(0)=v(0)=0 ; x^{\prime}\left(t_{1}\right)=v\left(t_{1}\right)=v_{\max } \tag{72}
\end{equation*}
$$

During the second period (constant speed operation)

$$
\begin{gather*}
x\left(t_{1}\right)=h_{1} ; \quad x\left(t_{1}+t_{2}\right)=h_{1}+h_{2} \\
x^{\prime}\left(t_{1}\right)=v\left(t_{1}\right)=x^{\prime}\left(t_{1}+t_{2}\right)=v\left(t_{1}+t_{2}\right)=v_{\max } \tag{73}
\end{gather*}
$$

During the third period (the deceleration period)

$$
\begin{gather*}
x\left(t_{1}+t_{2}\right)=h_{1}+h_{2} ; \quad x\left(t_{1}+t_{2}+t_{3}\right)=H \tag{74}\\
x^{\prime}\left(t_{1}+t_{2}\right)=v\left(t_{1}+t_{2}\right)=v_{\max } ; x^{\prime}\left(t_{1}+t_{2}+t_{3}\right)=v\left(t_{1}+t_{2}+t_{3}\right)=0
\end{gather*}
$$

where:

- t_{i} - represents the duration of the corresponding periods;
- h_{i} - is the distances undergone by the extraction containers during different periods.

In the same time, relations (72), (73) and (74) also need to comply with the following requirements:

$$
t_{1}+t_{2}+t_{3}=T ; \quad h_{1}+h_{2}+h_{3}=H ; \quad \frac{t_{2}}{T} \geq 0,6
$$

VI. ADOPTED OPTIMISATION MODEL

According to the expression (59), the following optimisation model based on the equivalent force is adopted:

$$
\begin{equation*}
F_{e f}=\sqrt{\frac{\sum_{i=1}^{3} \int_{t_{i i}}^{t_{f}} f(x, a) d t}{T_{e f}}}=\min (!) \tag{75}
\end{equation*}
$$

The conditions from the start and the end of the cycle:

$$
\begin{gather*}
x\left(t_{1,1}=0\right)=0 ; \quad x\left(t_{f 3}=T\right)=H \tag{76}\\
x^{\prime}(0)=v(0)=0 ; \quad x^{\prime}(T)=v(T)=0
\end{gather*}
$$

The requirements the actuating motor needs to comply with:

$$
\begin{equation*}
P_{e f}=\frac{v_{\max }}{1000 \eta_{a}} \sqrt{\frac{\sum_{i=1}^{3} \int_{t_{i i}}^{t_{f}} f(x, a) d t}{T_{e f}}} \leq P_{M} ; \frac{P_{\max }}{P_{e f}} \leq \gamma \tag{77}
\end{equation*}
$$

Restrictions imposed on periods:

For the starting period:

$$
\begin{gather*}
0 \leq t \leq t_{1} ; 0 \leq x(t) \leq h_{1} ; 0 \leq x^{\prime}(t) \leq v_{\max } ; a_{1 \text { min }} \leq x^{\prime \prime}(t) \leq a_{1 \text { max }} \\
x^{\prime \prime \prime}(t) \leq\left|\rho_{1 \max }\right| ; \quad x(0)=0 ; \quad x\left(t_{1}\right)=h_{1} ; x^{\prime}(0)=v(0)=0 ; \\
x^{\prime}\left(t_{1}\right)=v\left(t_{1}\right)=v_{\max }
\end{gather*}
$$

For the second period of constant speed operation:
$t_{1} \leq t \leq t_{1}+t_{2} ; h_{1} \leq x(t) \leq h_{1}+h_{2}$
$x^{\prime}(t)=v_{\text {max }}=$ const.; $x^{\prime \prime}(t)=0$
$x\left(t_{1}\right)=h_{1} ; \quad x\left(t_{1}+t_{2}\right)=h_{1}+h_{2}$

For the deceleration period:

$$
\begin{equation*}
\sum_{i=1}^{3} \int_{t_{i i}}^{t_{i}} f(x, a) d t=\int_{0}^{t_{1}} f(x, a) d t+\int_{t_{1}}^{t_{1}+t_{2}} f(x, a) d t+\int_{t_{1}+t_{2}}^{T} f(x, a) d t \tag{84}
\end{equation*}
$$

$$
\begin{gathered}
f(x, a)=(A+D H)^{2}- \\
-4 D(A+D H)\left[e^{\alpha t}\left(C_{1}+C_{2} t\right)+e^{-\alpha t}\left(C_{3}+C_{4} t\right)+\beta\right]+ \\
+4 D^{2}\left[e^{\alpha t}\left(C_{1}+C_{2} t\right)+e^{-\alpha t}\left(C_{3}+C_{4} t\right)+\beta\right]^{2}+2(A+D H) . \\
\sum m\left[C_{1} \alpha^{2} e^{\alpha t}+C_{2} \alpha e^{\alpha t}(2+\alpha t)+C_{3} \alpha^{2} e^{-\alpha t}+C_{4} \alpha e^{-\alpha t}(\alpha t-2)\right]- \\
-4 D \sum m\left[e^{\alpha t}\left(C_{1}+C_{2} t\right)+e^{-\alpha t}\left(C_{3}+C_{4} t\right)+\beta\right] . \\
\cdot\left[C_{1} \alpha^{2} e^{\alpha t}+C_{2} \alpha e^{\alpha t}(2+\alpha t)+C_{3} \alpha^{2} e^{-\alpha t}+C_{4} \alpha e^{-\alpha t}(\alpha t-2)\right]+ \\
+\left(\sum m\right)^{2}\left[C_{1} \alpha^{2} e^{\alpha t}+C_{2} \alpha e^{\alpha t}(2+\alpha t)+C_{3} \alpha^{2} e^{-\alpha t}+C_{4} \alpha e^{-\alpha t}(\alpha t-2)\right]^{2}
\end{gathered}
$$

The C_{i} integration co nstancies ar ed etermined u sing relations (67) and (68).

Statically balanced installation $(\mathbf{D}=0)$

$f(x, a)=A^{2}+A \sum m\left(4 C_{3}+12 C_{4}\right)+\left(2 C_{3}+6 C_{4}\right)^{2}\left(\sum m\right)^{2}(82)$
The C_{i} integration constancies are determined using relation (69).

Dynamically balanced installation ($\mathrm{D}<0$)

The C_{i} integration co nstancies ar ed etermined u sing relations (69) and (70).

Therefore, considering the t hree p hases oft he t ransport cycle, the numerator of expression (75) of the equivalent force may be written as follows:

Considering the large volume ofcalculans, thedigital integration of the components of expression (83) is imposed.

VII. EXAMple 1

Based on the proposed method a, C language software has been developed. Software which was tested for an extraction installation with cages with the following parameters:

- practical load extracted during a race:
$Q_{u}=6000 \mathrm{~kg}$;
- extraction depth:
$H=480 \mathrm{~m}$;
- the sum of reduced masses:
$\Sigma m=66368 \mathrm{~kg}$;
- specific weight of the extraction cable:
$q=5,77 \mathrm{~kg} / \mathrm{m}$;
- specific weight of the balance cable:
$q_{1}=6,72 \mathrm{~kg} / \mathrm{m}$;
- maximum acceleration at starting:
$a_{1 \text { max }}=0,8 \mathrm{~m} / \mathrm{s}^{2}$;
- maximum acceleration in breaking:
$a_{3 \text { max }}=1 \mathrm{~m} / \mathrm{s}^{2}$;
- maximum extraction speed:
$v_{\text {max }}=9,35 \mathrm{~m} / \mathrm{s}$;
- operational period of extraction containers:
$T=62 \mathrm{~s}$;
- pause period between races:
$t_{p}=20 \mathrm{~s}$;
- transmission efficiency:

$$
\eta=0,92 .
$$

In order to obtain a m aximum efficiency, the following have been considered:

$$
\frac{t_{2}}{T}=0,6 \text { and } t_{1}=t_{3}=0,2 \cdot T
$$

Eliminating q_{1} for the unbalanced case and considering $q_{1}=$ q for thes tatically balanced one, m inimum v alues oft he equivalent force and t he act uating p ower h ave r esulted $w i t h$ approximately 10% smaller than the classic method.

Figure 5 presents a print screen of the results obtained.

Fig. 5 Print screen of obtained results for an extraction installation with cages
VIII. THE CASE OF MULTICABLE VERTICAL TRANSPORT INSTALLATIONS POWERED BY A CONTINUOUS CURRENT MOTOR

For this kind of installation, the general equation of dynamics is:
$F=k Q_{u} g \pm\left[\alpha_{c} Q_{\text {sch }}+\left[\left(n q-n_{1} q_{1}\right)(H-2 x)\right] g \pm a \sum m-\beta_{c} Q_{u} g\right]$
It is the case of several extraction installations with tilting buckets and cages, due to the fact that in the beginning and the end of the t ransport cy cle o ne ofthe t ransport containers is found on the interior of the guiding rails of the tower, some of the weight istaken by it, th erefore the te nsion in the cable decreases onthe m entioned b ranch. Mo reover, due to the beginning of the evacuation process before its complete stop, the useful load varies as well during this period.

Putting to gether the terms from relation (84), the following form is obtained:

$$
\begin{equation*}
F=\left(k Q_{u}+\alpha_{c} Q_{s c h}-\beta_{c} Q_{u}\right) g+\left(n q-n_{1} q_{1}\right)(H-2 x) g+a \sum m \tag{86}
\end{equation*}
$$

Considering:

$$
\begin{aligned}
& A_{1}=\left(k Q_{u}+\alpha_{c} Q_{s c h}\right) g \\
& A_{2}=\left(k Q_{u}+\alpha_{c} Q_{s c h}-\beta_{c} Q_{u}\right) g \\
& A=k Q_{u} g \\
& D=\left(n q-n_{1} q_{1}\right) g \\
& H=H_{e}+2 h_{b}
\end{aligned}
$$

where:

- H_{e} - is the level difference between the transport horizons;
- h_{b} - is the height of the silo.

For:
$t=0 ; \alpha_{c} \geq 0 ;$ and $\beta_{c}=0$
$t \geq \mathrm{t}_{0} ; \quad \alpha_{c}=0$ (t_{0} is the m ovement p eriod of the empty container within the guiding rail)
$t<T ; \beta_{c}=0$
$t=T ; \beta_{c}>0(0,3-0,75)$
Squaring up expression (85) it results:

$$
\begin{align*}
& F^{2}=A_{i}^{2}+2 A_{i} D H+D^{2} H^{2}-4 A_{i} D x-a D^{2} H x+4 D^{2} x^{2}+ \\
& +2 A_{i} a \sum m+2 D H a \sum m-4 D x a \sum m+a^{2}\left(\sum m\right)^{2} \tag{87}
\end{align*}
$$

Replacing t he ex pression oft he f orce in f unctional (50), it results a relation similar to (52) where the value of A_{i} may either be A_{1}, A_{2} or A depending on the transport phase:

$$
\begin{align*}
& f(x, a)=\left(A_{i}+D H\right)^{2}-4 D\left(A_{i}+D H\right) x+4 D^{2} x^{2}+ \\
& +2 a\left(A_{i}+D H\right) \sum m-4 D x a \sum m+a^{2}\left(\sum m\right)^{2} \tag{88}
\end{align*}
$$

The ex tremis of f unctional (88) ar ed etermined with t he same r elations as int he cas e p resented ab ove f or different balancing degrees, but n ew r estrictions ap pear d uring t he starting and the ending period of a transport cycle.

The case of af ive p hase ex traction cy cle u sing t he s ame constancies:

- During the movement ofthe e mpty transport container within the guiding rails:

$$
\begin{gather*}
x(0)=0 ; \quad x(t)=h_{0} \\
x^{\prime}(0)=v(0)=0 ; \quad x^{\prime}\left(t_{0}\right)=v\left(t_{0}\right)=v_{0} \tag{89}
\end{gather*}
$$

- During the second period (acceleration):

$$
x\left(t_{1}\right)=h_{1} ; \quad x\left(t_{0}+t_{1}\right)=h_{0}+h_{1}
$$

$$
\begin{equation*}
x^{\prime}\left(t_{1}\right)=v\left(t_{1}\right)=v_{1} ; \quad x^{\prime}\left(t_{0}+t_{1}\right)=v\left(t_{0}+t_{1}\right)=v_{\max } \tag{90}
\end{equation*}
$$

- During the third period (constant speed operation):

$$
x\left(t_{0}+t_{1}\right)=h_{0}+h_{1} ; \quad x\left(t_{0}+t_{1}+t_{2}\right)=h_{0}+h_{1}+h_{2}
$$

$$
\begin{align*}
x^{\prime}\left(t_{0}+t_{1}\right) & =v\left(t_{0}+t_{1}\right)=v_{\max } \\
x^{\prime}\left(t_{0}+t_{1}+t_{2}\right) & =v\left(t_{0}+t_{1}+t_{2}\right)=v_{\max } \tag{91}
\end{align*}
$$

- During the fourth period (acceleration):

$$
\begin{gather*}
x\left(t_{0}+t_{1}+t_{2}\right)=h_{0}+h_{1}+h_{2} \\
x\left(t_{0}+t_{1}+t_{2}+t_{3}\right)=h_{0}+h_{1}+h_{2}+h_{3} \\
x^{\prime}\left(t_{0}+t_{1}+t_{2}\right)=v\left(t_{0}+t_{1}+t_{2}\right)=v_{\max } \tag{92}\\
x^{\prime}\left(t_{0}+t_{1}+t_{2}+t_{3}\right)=v\left(t_{0}+t_{1}+t_{2}+t_{3}\right)=v_{4}
\end{gather*}
$$

- During the movement period of t he fullbucketinthe guiding rail:

$$
\begin{gather*}
x\left(t_{0}+t_{1}+t_{2}+t_{3}\right)=h_{0}+h_{1}+h_{2}+h_{3} \\
x^{\prime}\left(t_{0}+t_{1}+t_{2}+t_{3}\right)=v\left(t_{0}+t_{1}+t_{2}+t_{3}\right)=v_{4} \tag{93}\\
x\left(t_{0}+t_{1}+t_{2}+t_{3}+t_{4}\right)=H \\
x^{\prime}\left(t_{0}+t_{1}+t_{2}+t_{3}+t_{4}\right)=v(T)=0
\end{gather*}
$$

where:

$$
\begin{aligned}
& t_{0}+t_{1}+t_{2}+t_{3}+t_{4}=T \\
& h_{0}+h_{1}+h_{2}+h_{3}+h_{4}=H
\end{aligned}
$$

The used optimisation model is an extension of expression (75):

$$
\begin{equation*}
F_{e f}=\sqrt{\frac{\sum_{i=1}^{5} \int_{t_{i i}}^{t_{f i}} f(x, a) d t}{T_{e f}}}=\min (!) \tag{94}
\end{equation*}
$$

Imposed restrictions during the periods:

- For the starting period:

$$
\left.\begin{array}{l}
0 \leq t \leq t_{0} \\
0 \leq x(t) \leq h_{0} \\
0 \leq x^{\prime}(t) \leq v_{0} ; \quad v_{0} \leq 2,5 \mathrm{~m} / \mathrm{s} \\
a_{0 \text { min }} \leq x^{\prime \prime}(t) \leq a_{0 \text { max }} ; \quad a_{0 \text { max }}=0,5 \mathrm{~m} / \mathrm{s}^{2} \tag{95}\\
x^{\prime \prime \prime}(t) \leq\left|\rho_{0 \text { max }}\right| ; \quad \rho_{0 \text { max }}=3 \mathrm{~m} / \mathrm{s}^{3} \\
x(0)=0 ; \quad x\left(t_{0}\right)=h_{0} \\
x^{\prime}(0)=0 ; \quad x^{\prime}\left(t_{0}\right)=v\left(t_{0}\right)=v_{0}
\end{array}\right\}
$$

- For the acceleration period:

$$
\begin{align*}
& t_{0} \leq t \leq t_{0}+t_{1} \\
& h_{0} \leq x(t) \leq h_{0}+h_{1} \\
& v_{0} \leq x^{\prime}(t) \leq v_{\max } \tag{96}\\
& a_{1 \text { min }} \leq x^{\prime \prime}(t) \leq a_{1 \max } ; \quad a_{1 \max }=0,5 \div 0,8 \mathrm{~m} / \mathrm{s}^{2} \\
& x^{\prime \prime \prime}(t) \leq\left|\rho_{1 \max }\right| ; \quad \rho_{1 \max }=5 \mathrm{~m} / \mathrm{s}^{3}
\end{align*}
$$

- For the constant speed operation period:
$t_{0}+t_{1} \leq t \leq t_{0}+t_{1}+t_{2}$
$h_{0}+h_{1} \leq x(t) \leq h_{0}+h_{1}+h_{2}$
$x^{\prime}(t) \leq v_{\text {max }}=$ const
$x^{\prime \prime}(t)=0$
$x\left(t_{0}+t_{1}\right)=h_{0}+h_{1} ; \quad x\left(t_{0}+t_{1}+t_{2}\right)=h_{0}+h_{1}+h_{2}$
- For the deceleration period:

$$
\left.\begin{array}{l}
t_{0}+t_{1}+t_{2} \leq t \leq t_{0}+t_{1}+t_{2}+t_{3} \\
h_{0}+h_{1}+h_{2} \leq x(t) \leq h_{0}+h_{1}+h_{2}+h_{3} \\
v_{4} \leq x^{\prime}(t) \leq v_{\max } \tag{98}\\
\left|a_{3 \text { min }}\right| \leq x^{\prime \prime}(t) \leq\left|a_{3 \text { max }}\right| ; \quad a_{3 \text { max }}=0,5 \div 1,0 \mathrm{~m} / \mathrm{s}^{2} \\
x^{\prime \prime \prime}(t) \leq\left|\rho_{3 \text { max }}\right| ; \quad \rho_{3 \text { max }}=5 \mathrm{~m} / \mathrm{s}^{3}
\end{array}\right\}
$$

- For the period of the m ovement of the full container within the guiding rail:

$$
\left.\begin{array}{l}
t_{0}+t_{1}+t_{2}+t_{3} \leq t \leq T \tag{99}\\
h_{0}+h_{1}+h_{2}+h_{3} \leq x(t) \leq H \\
0 \leq x^{\prime}(t) \leq v_{4} \\
a_{4 \text { min }} \leq x^{\prime \prime}(t) \leq a_{4 \max } ; \quad a_{4 \max }=0,5 \mathrm{~m} / \mathrm{s}^{2} \\
x^{\prime \prime \prime}(t) \leq\left|\rho_{4 \max }\right| ; \quad \rho_{4 \max }=3 \mathrm{~m} / \mathrm{s}^{3}
\end{array}\right\}
$$

Considering the 5 phases of the transport, the numerator of expression (93) of the equivalent force becomes:

$$
\begin{align*}
& \sum_{i=1}^{5} \int_{t_{i}}^{t_{t_{i}}} f(x, a) d t=\int_{0}^{t_{0}} f(x, a) d t+\int_{t_{0}}^{t_{0}+t_{1}} f(x, a) d t+ \\
& \int_{t_{0}+t_{1}}^{t_{0}+t_{t^{\prime}+t_{2}}} f(x, a) d t+\int_{t_{0}+t_{1}+t_{2}}^{t_{0}+t_{1}+t_{2}+t_{3}} f(x, a) d t+\int_{t_{0}+t_{1}+t_{2}+t_{3}}^{T} f(x, a) d t \tag{100}
\end{align*}
$$

in the e xpression of the functional $f(x, a)$ measure A_{i} will have the following values depending on the phase of transport:

- in moment $\mathrm{t}=0: \quad A_{i}=A_{1}=\left(k Q_{u}+\alpha_{c} Q_{\text {sch }}\right) g$
- in phase $0<\mathrm{t}<\mathrm{t}_{0}: \quad A_{i}=A=k Q_{u} g$
- in phase $\mathrm{t}=\left(\mathrm{t}_{0}\right) \div\left(\mathrm{t}_{0}+\mathrm{t}_{1}\right): A_{i}=A=k Q_{u} g$
- in phase $\mathrm{t}=\left(\mathrm{t}_{0}+\mathrm{t}_{1}\right) \div\left(\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}\right): A_{i}=A=k Q_{u} g$
- in phase $\mathrm{t}=\left(\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}\right) \div\left(\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right): A_{i}=A=k Q_{u} g$
- in $\left(\mathrm{t}_{0}+\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)<\mathrm{t}<\mathrm{T}: A_{i}=A=k Q_{u} g$
- in moment $\mathrm{t}=\mathrm{T}: A_{i}=A_{2}=\left(k Q_{u}+\alpha_{c} Q_{s c h}-\beta_{c} Q_{u}\right) g$

IX. EXAMPLE 2

Based on the proposed method a software in C language has been d eveloped, s oftware which has been t ested f or a multicable e xtraction in stallation w ith th ef ollowing parameters:

- practical load extracted during a race:

$$
Q_{u}=12.000 \mathrm{~kg} ;
$$

- the weight of the tilting bucket:

$$
Q_{s c h}=18.000 \mathrm{~kg} ;
$$

- extraction depth:

$$
H=913 \mathrm{~m} ;
$$

- the sum of reduced masses:

$$
\Sigma m=89.000 \mathrm{~kg}
$$

- the specific weight of an extraction cable:

$$
q=10.6 \mathrm{~kg} / \mathrm{m} ;
$$

- the number of extraction cables:

$$
n=2
$$

- the specific weight of a balance cable:

$$
q_{1}=10.4 \mathrm{~kg} / \mathrm{m}
$$

- the number of balance cables:

$$
n_{1}=2
$$

- maximum extraction speed:

$$
v_{\max }=12 \mathrm{~m} / \mathrm{s}
$$

- the length of the discharge guiding rails:

$$
h_{0}=h_{4}=2 \mathrm{~m}
$$

- maximum acceleration during the starting period:

$$
a_{1}=0,8 \mathrm{~m} / \mathrm{s}^{2}
$$

- maximum deceleration during breaking:

$$
a_{3}=1,0 \mathrm{~m} / \mathrm{s}^{2}
$$

- the exit speed from the guiding rail of the empty tilting bucket:

$$
v_{0}=2,5 \mathrm{~m} / \mathrm{s}
$$

- the entering speed in the guiding rail of the full tilting bucket:

$$
v_{4}=1,5 \mathrm{~m} / \mathrm{s}
$$

- the movement period of the extraction containers:

$$
T=87 \mathrm{~s} ;
$$

- pause period between the races:

$$
t_{p}=20 \mathrm{~s}
$$

- transmission efficiency:

$$
\eta=0,85
$$

- the coefficients characterising the extraction container:

$$
k=1,15 ; \alpha_{c}=0,15 ; \beta_{c}=0,5 .
$$

Figure 6 presents a print screen of the results obtained.

Datele primare de calcul	Eradul de echilibrare al instalatiel de extractie							
T[s] = 87	Echilibrat static							
H[m] $=913$								
Qu[kg] =12000								
$\begin{aligned} \mathbf{q}[\mathrm{kg} / \mathrm{m}] & =10.60 \\ \mathbf{n} & =2 \end{aligned}$	I	5 [N]	P [kW]	271		[N]	P [kH]	121
$\mathrm{q} 1[\mathrm{~kg} / \mathrm{m}]=10.40$								
$\mathrm{n} 1 \times 2$	87	133666	1887	0.48	87	139677	1972	0.38
Em[kg] =89000.00	89	133514	1885	0.47	89	139719	1973	0.36
$\mathrm{a} 1\left[\mathrm{~m} / \mathrm{s}^{2}\right]=0.80$	91	133423	1884	0.44	91	139879	1975	0.33
a3 $\left.3 \mathrm{~m} / \mathrm{s}^{2}\right]=1.00$	93	133294	1882	0.43	93	139893	1975	0.31
$U_{\text {max }}[\mathrm{m} / \mathrm{s}]=12.00$	95	133288	1881	0.48	95	139896	1975	0.29
$\mathbf{k} \quad=1.15$	97	133101	1879	0.39	97	139891	1975	0.28
$t \mathrm{ts]}$] $=20$	99	133024	1878	0. 36	99	139977	1976	0.25
ก[\%] $=85$	101	132949	1877	0.34	181	139951	1976	0.24
кc $=0.15$	103	132867	1876	0.31	103	139920	1975	0.22
$\mathrm{Bc}=0.50$	185	132756	1874	0.29	185	139978	1976	0.20
Qsch[kg] =18000	197	132640	1873	0.24	187	139927	1975	0.19
ho[m] = 2.00	189	132531	1871	0.22	189	$13995 ?$	1976	0.17
Calculul fortei si a puterii efective petru inst.de extractie cu schipuri								

Fig. 6 Results obtained for the multicable extraction installation

Figures $7 \ldots 18$ present the v ariation diagrams of the speed and acceleration for $T \in[87,109] \mathrm{s}$.

Fig. 7 The variation of speed and acceleration for $\mathrm{T}=87 \mathrm{~s}$

Fig. 8 The variation of speed and acceleration for $\mathrm{T}=89 \mathrm{~s}$

Fig. 9 The variation of speed and acceleration for $\mathrm{T}=91 \mathrm{~s}$

Fig.10The variation of speed and acceleration for $\mathrm{T}=93 \mathrm{~s}$

Fig. 11 The variation of speed and acceleration for $\mathrm{T}=95 \mathrm{~s}$

Fig. 12 The variation of speed and acceleration for $\mathrm{T}=97 \mathrm{~s}$

Fig. 13 The variation of speed and acceleration for $\mathrm{T}=99 \mathrm{~s}$

Fig. 14 The variation of speed and acceleration for $\mathrm{T}=101 \mathrm{~s}$

Fig. 15 The variation of speed and acceleration for $\mathrm{T}=103 \mathrm{~s}$

Fig. 16 The variation of speed and acceleration for $\mathrm{T}=105 \mathrm{~s}$

Fig. 17 The variation of speed and acceleration for $\mathrm{T}=107 \mathrm{~s}$

Fig. 18 The variation of speed and acceleration for $\mathrm{T}=109 \mathrm{~s}$

X. Conclusions

- Analysing the optimisation trials of electric operation of hoisting installations, presented in the speciality literature, it is observed t hat t hese ar e valid o nly for trapezoid tachograms (with constant accelerations an d inear v ariation of s peed in extreme periods). There is no certainty that this type of variation is optimum for e nsuring the va lue of the minimum power. Imposing from the be ginning a trapezoid form of the tachogram d oes n ot h ave an y s cientific j ustification, being made empirically;
- In order to minimise the actuating power of the extraction installations, the method of the calculus of variations is used, establishing an adequate mathematical model;
- In or der to use the pr oposed optimisation method, the definition of the optimisation a nd r estriction f unctional w as imposed. T he o ptimisation f unctional is b ased $o n t h e$ peripheral force of the cable actuating organism results from the general equation of dynamics;
- The s olutions o fE uler-Poisson equations of t he optimisation functional differ depending the degree of balance of the installation;
- The digital integration of the functional of the equivalent force has to be made s eparately, f or each p hase of the extraction, considering the difference between the restrictions characterising the distinct phases;
- Using the t hird d egree q uadrate formula for the digital integration of the f unctional co rresponds co mpletely to the precision required by the calculations;
- The im portant d etermination v olume for in tegrating the optimisation functional implies the u se ofc omputers. T he software developed i n C 1 anguage an d al so ex perimented proved itself to be a fast tool for practical calculations;
- The d eveloped cal culation s oftware al low the fast determination of the minimum actuating power for any mono or multic able, w ith tiltin gc ontainers or c age extraction installation (unbalanced, statically or dynamically balanced);
- Following the u se oft he d eveloped s oftware for the extraction installations with c ages o r tiltin gc ontainers, considering t he r eal ch aracteristic p arameters, v alues of the
actual p ower r esulted with $50-70 \mathrm{~kW}$ s maller than when classical methods were used, representing therefore a r elative decrease of power and co nsequently of t he co nsumption of energy with approximately 10%;
- The proposed method is an operative and precise one and may s erve to v erify a nd d esign the extraction installations, determining the optimum functional parameters.

REFERENCES

[1] Fransua Alexandru, "Maşini şi sisteme de acționări electice - Probleme fundamentale", Editura Tehnică, București, 1978.
[2] Florin Dumitru Popescu, Ilie Mitran, "The analysis of vertical transport installations considering the theory automatic systems", Proceedings of the 8th WSEAS International Conference on System Science and Simulation in Engineering (ICOSSSE '09), University of Genova, Italy October 17-19, 2009, pp.125-130.
[3] Florin Dumitru P opescu, I lie M itran, "Vertical T ransport Installations Balance S urvey", WSEAS TRANSACTIONS on SYSTEMS and CONTROL, I ssue 10 , V olume 4 , O ctober 2009, ISSN: 1991-8763, pp.509-518.
[4] Florin D umitru P opescu, "Aplicații industriale ale tehnicii de calcul, Editura AGIR, Bucureşti", 2009, ISBN 978-973-720-234-5.
[5] Florin Dumitru P opescu, "Instalații de transport pe verticală", E ditura Focus, Petroşani, 2010, ISBN 978-973-677-182-8.
[6] Florin Dumitru Popescu, Gabriel Dimirache, "Instalații de transport pe verticală - Calcule de verificare şi dimensionare", E ditura F ocus, Petroşani, 2011, ISBN 978-973-677-182-8.
[7] Florin Dumitru Popescu, Ilie Mitran, "The analysis of vertical transport installations considering the theory automatic systems", Proceedings of the 8th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '09), U niversity o f Genova, Genova, Italy October 17-19, 2009, ISSN: 1790-2769, ISBN: 978-960-474-131-1, pp.125... 130.
[8] Magyari A ndrei, "Instalații mecanice miniere", Editura Didactică şi Pedagogică Bucureşti, 1990.
[9] Nan Ma rin S ilviu, "Capacitatea sistemelor de transport", Editura Universitas Petroşani, 2000.
[10] Petrilean D an C odrut, "The study of Energy L osses through C ase Helical S crew C ompressor", Bulletin of the Transilvania University of Braşov, Proceedings of the internationally attended national conference on thermodynamics, May, 21-22, V ol. 2(51) series I, ISSN 2065-2119, ISBN 978-973-598-521-9, pp. 235-241 2009.
[11] Petrilean Dan Codruț, "Method of Calculus for the Power Input of the Helical S crew C ompressor", Politehnica Bucharest University, Sci. Bull. Series D, Vol. 71, Iss. 4, ISSN 1454-2358, pp.121-130, 2009.
[12] Pop E mil, "Automatizări în industria minieră", Editura Didactică şi Pedagogică, Bucureşti, 1983.
[13] Şabac I.Gh., "Matematici s peciale", Editura Didactică şi Pedagogică, Bucureşti,1981.
[14] Tunsoiu G heorghe, "Acționări electrice", Editura Didactică şi Pedagogică, Bucureşti, 1982.

[^0]: F. A. Au thor is Ph.D. A ssociate Professor to Department of Mechanical Engineering, Industrial Engineering and T ransportation, U niversity o f Petroşani, România (phone: 0040723719303; e-mail: fpopescu@gmail.com).

